Hand Hygiene Day: It’s in your hands – prevent sepsis in health care

Sepsis is a life-threatening complication from infection that arises when an infection alters the body’s normal response, causing injury to tissues and organs. Each year, sepsis can cause up to 6 million deaths globally – most of which are preventable.

Sepsis is the most preventable cause of death and disability in Europe. According to the Global Sepsis Alliance, more than 3.4 million individuals develop sepsis every year in the WHO European Region, and 700 000 of these patients do not survive. An additional one third of survivors die within the following year, and many face lifelong consequences, such as physical, psychological and cognitive challenges.

The financial burden due to sepsis has been calculated to be more than US$ 24 billion, representing 6.2% of total hospital costs in 2013. Studies in Europe and Canada estimated the daily costs of hospital care of a septic patient to be between €710 and €1033 in 2000 (equivalent to about US$ 645 and US$ 939, respectively).

On Hand Hygiene Day, observed annually on 5 May, WHO calls on health facilities to prevent health care-associated sepsis through hand hygiene and infection prevention and control (IPC) action. By working together to each play our part, we can prevent sepsis and save millions of lives every year.

To stop sepsis, prevent infection

The first step to stopping sepsis is implementing measures that prevent infections from occurring. The second is preventing infections from evolving into sepsis. In both communities and health-care facilities, this requires early detection of sepsis signs and symptoms and appropriate antibiotic treatment.

In health-care settings, sepsis may result from health care-associated infections. This makes it all the more important for health workers to practise good IPC measures, including effective hand hygiene. Washing hands properly prevents infections and, in turn, reduces the risk of sepsis in health-care facilities.

This year’s Hand Hygiene Day campaign follows a resolution, adopted in May 2017 by the Seventieth World Health Assembly, recognizing sepsis as a global health priority and calling for improved prevention, diagnosis and clinical management of sepsis. It emphasizes 5 calls to action for 5 target audiences:

• health workers: “Take 5 moments to clean your hands to prevent sepsis in health care”;
• IPC leaders: “Be a champion in promoting hand hygiene to prevent sepsis in health care”;
• health facility leaders: “Prevent sepsis in health care, make hand hygiene a quality indicator in your hospital”;
• ministries of health: “Implement the 2017 WHA sepsis resolution. Make hand hygiene a national marker of health care quality”; and
• patient advocacy groups: “Ask for 5 moments of clean hands to prevent sepsis in health care”.

It is also vital to ensure that health workers can recognize, diagnose and rapidly treat sepsis. Despite its tragic impact, sepsis is frequently underdiagnosed at an early stage when it is still potentially reversible.

The evolution of an infection to sepsis can be prevented through early detection of the signs and symptoms, followed by prompt medical care and especially treatment with appropriate antimicrobials. This is crucial to increasing the chances of surviving sepsis. In the case of antimicrobial-resistant infections, which are becoming increasingly common, a patient’s condition can deteriorate rapidly, further underscoring the need for early diagnosis.

Working towards a sepsis-free world

It is possible to envision a world free from sepsis, but this vision will only become a reality through concerted action taken by a range of actors. On Hand Hygiene Day, it is time to collectively commit to raising awareness about the proven approaches to preventing infection, and to encourage everyone – particularly health workers – to recognize that stopping sepsis is in their hands.

WHO/Europe


Patient safety: too little, but not too late

The first-ever World Patient Safety Day is taking place on Sept 17, 2019. Every day, countless patients worldwide are put at risk by unsafe care and end up requiring treatment for ailments caused by the very system that was supposed to help them get better. Protecting patients from errors, injuries, accidents, and infections is an essential goal for every health system, but no health system has so far successfully addressed patient safety.

Some of the statistics proffered by WHO to high-light patient safety are striking. In low-income and middle-income countries (LMICs), 134 million adverse events per year are directly attributable to unsafe care. These adverse events—including misdiagnosis, hospital-acquired infections, and medical errors—lead to 2·6 million unnecessary deaths. Worldwide, the risk of patient death because of a preventable medical accident is one in 300. One in ten patients suffer injury while receiving health care, and 15% of all hospital expenses are incurred as a result of treating failures in patient safety.

Patient safety hinges on quality of care. The Lancet Global Health’s 2018 Commission highlighted the need for “high-quality health systems that optimise health care in each context by consistently delivering care that improves or maintains health”. It feels obvious to state that a health-care system should aim to improve the health of those accessing it. Similarly, all health professionals expect that patients will have their condition improved by health care. However, the data compiled by WHO should be a wake-up call as they would be in any other industry. So what can be done?

First, do no harm. The safety of patients must be the paramount concern of professionals and the systems they work in. Rather than a platitude, this ask is an exhortation to strengthen systems, build better infrastructure, and value strong leadership. Reporting in US hospitals shows some health-care-associated infections can be reduced by as much as 70% with proper patient safety interventions that include stan-dardised clinician education, proper notification processes, and strict hand hygiene procedures. However, the WHO hand hygiene guidelines sug-gest compliance with proper hygiene can be as low s 40%. Hence, a greater effort needs to be made in monitoring and ensuring that basic practices of patient safety are strong and robust across all institutions, no matter how obvious the need for such procedures.

Second, health professionals must recognise that patient safety is a two-way partnership. Patients must be involved—indeed be central—in their own care. The myriad ways inadvertent harm can be done to patients indicate that everyone, from policy maker and health advocate to caregiver and health worker, holds a vital stake in patient safety. Indeed, evidence suggests that involving patients, service users, and carers in important decisions relating to care and treatment strengthens patient safety and is the best way for patients to achieve a positive outcome. As WHO comments, “safe health care starts with good communication”.

Finally, awareness of the burden that patient safety requirements place on LMICs is needed: addressing all improvements necessary for increased patient safety require resources. Two-thirds of all adverse events resulting from unsafe care occur in LMICs. Health professionals in high-income countries must ask themselves what they can do, not just to promote patient safety in their own system but also to offer outreach, support, resources, and expertise to LMICs bearing the burden of raised patient safety standards, rapidly changing disease patterns, and expectations of achieving the same development goals.

Recognising the importance of patient safety world wide is something that strikes right at the philosophical heart of health care. A Comment in this issue highlights how patient safety is now a core part of the move towards universal health coverage and states, importantly, that “addressing systemic, organisational, cultural and behavioural drivers of patient harm remains extremely challenging and a lot of known problems remain unsolved”. World Patient Safety Day is a prompt to everyone involved in care to examine their role in contributing to these drivers. In the treatment of immediate illness, health-care systems must offer best practice and consistent treatment for all patients, and at all levels, to ensure further damage is prevented.

The Lancet
www.thelancet.com Vol 394 September 14, 2019


Effect of gloved hand disinfection on hand hygiene before infection- prone procedures on a stem cell ward

From February 2017 to April 2018, a tri-phase study was performed with the intervention ‘gloved hand disinfection’ at the stem cell unit of the University Medical Center, Goettingen, a tertiary care centre.

The stem cell ward comprises 16 beds in 10 patient rooms. The staff consisted of eight physicians and 18 female/male nurses, of whom five physicians and nine nurses were present each day. The ward had already been sufficiently equipped with alcohol-based hand rub (ABHR) dispensers; only alcoholic disinfectants were used.

During phase I (February to August 2017) baseline observation was performed to determine baseline hand hygiene compliance. During phase II (September 2017 to January 2018) gloved hand disinfection was strongly advised for predefined situations, but not enforced. Because gloved hand disinfection makes work easier, HCWs were keen to try this tool. If the HCW preferred regloving with proper hand rub instead of disinfecting gloves, the infection control professional (ICP) documented correct behaviour. During phase III (February to May 2018) gloved hand disinfection was restricted to discriminate intervention effects from time trends and learning effects. The gloved hand disinfection was restricted to workflows including at least one infection-prone procedure only within one patient. Examples were (not restricted to):

– preparing and handling with intravenous medication and/or blood products;

– manipulations at central or peripheral lines including blood sampling procedure.

The primary endpoint, on which the power analysis was based, was full hand hygiene compliance determined by direct observation (reference standard) according to the WHO protocol [18]. Hand hygiene compliance was defined by the number of performed hand rubs divided by the number of observed hand hygiene opportunities. Observation was performed by three ICPs. Inter-observer agreement was ≥90% after a six-week training period. The secondary endpoints were: (i) WHO indication-specific hand hygiene compliance, notably compliance ‘before aseptic tasks’, defined by the number of hand rubs performed divided by the number of observed indications for specific opportunities [18, 19]; (ii) incidence density of severe infection (defined by healthcare-associated primary bloodstream infection (HABSI; no. per 1000 patient days (PD)) and healthcare-associated pneumonia (HAP; no. per 1000 patient-days);(iii) incidence density (occurrence) of healthcare-acquired multidrug-resistant (micro-)organism (HA MDRO; no. per 1000 patient-days).

Severe infections (HABSI and HAP) were determined according national reference protocol designed for allogeneic stem cell transplant patients and adjusted at 1000 patient-days [20]. This protocol addressed patients undergoing allogeneic stem cell transplants and evaluated sepsis and pneumonia. HA MDROs were defined as meticillin-resistant Staphylococcus aureus (MRSA), extended spectrum β-lactamase (ESBL) r carbapenemase-producing Enterobacteriaceae and vancomycin-resistant enterococci. HA MDROs were defined according to the US Centers for Disease Control and Prevention guidelines for MDRO management [21, 22]. Specimens from outpatients and inpatients of less than four days were excluded. Patient specimens included samples taken routinely for screening and for investigation of possible infection. All data, obtained from the laboratory information system, were analysed and assessed daily by ICPs. Length of stay (patient-days) was determined using the patient management system. Hand hygiene observations were made during day shifts; one observation period lasted 30–90 min and a range of five to 25 opportunities was observed in each. An additional secondary endpoint, HCWs acceptance of gloved hand disinfection, was assessed using a standardized questionnaire, using an ordinal scale, applied to 10 selected HCWs (Appendix A, including Supplementary Figure S1).

The investigation was approved by the local ethics committee (Reference No. COMTRA-12/12/16).

For the study, nitrile-polymer gloves were used [17]. These were Purple-nitrile-xtra® (Halyard Health, Inc., Alpharetta, GA, USA; manufacturer’s specifications: ISO 374-1/5 2016 Type C, ISO 10993-1/2/5/10/12; EN 16523-1, EN 455, 420, 374-2/4) and Nitrile LG PF® (Maimed GmbH, Neuenkirchen, Germany; manufacturer’s specifications: EN420, 374, 455, ASTM 6319, CAT III) [17]. Hand rubs were performed using standard hand rub solutions used at each hospital: Desderman pure® (Schülke & Mayr GmbH, Nordstedt, Germany; pharmaceutical ingredients 78.2 g ethanol 96%, 0.1 g biphenyl-2-ol, povidone 30, isopropylmyristate, 2-ethylhexanoate, sorbitol, 2-propanol, purified water) and Softa-Man® (B. Braun Melsungen AG, Melsungen, Germany; pharmaceutical ingredients: 45% ethanol, 18% 1-propanol, purified water, diisopropyladipate, macrogol-6-glycerolcaprylocaprate, dexpathenol, bisabolol, lemon- and linalool-flavour, allantoin).

Gloved hand disinfection may have risks (e.g. skin damage, transmission of microbes), if HCWs perform gloving inappropriately, e.g. changing between patients with gloved hands, wearing gloves for too long, and inappropriate glove–ABHR combinations. However, disinfectability and stability of medical examination gloves has been recently demonstrated in vitro [17, 23]. Moreover, gloved hand disinfection is in line with the national guidelines and recommendations of the Clean Hands campaign (ASH) which was founded initially by the German Coalition for Patient Safety (APS) and the German National Reference Center for Surveillance of Nosocomial Infections (NRZ Surveillance).

To minimize the remaining risks, we defined the following rules before starting the study:

– All HCWs were informed individually and in detail about the design, timeline and aim of the study, and were given appropriate training on gloved hand disinfection.

– HCWs were warned about the risk of premature loss of integrity of gloves and were asked to report any event of suspicious alteration, e.g. stickiness, fragility, sacculation, or colour change of gloves when disinfected. Pretesting of several glove and ABHR combinations was used to determine the best combinations for the study.

– The number of consecutive gloved hand disinfections was restricted to a maximum of five.
The duration of glove usage was shortened to 20 min (in contrast to the ASH statement).

– Gloves had to be changed immediately whenever dirty or damaged.

– The same gloves could only be worn for contact with an individual patient.

– The study was supported by the occupational health service.

– The trial was overseen by ICPs, who were empowered to interrupt the study if any rules were broken.

Statistical analysis

Power calculation and expected increase in hand hygiene compliance of 40% were applied according to previous intervention strategies supposing 80% power with a given two-sided α error level of 5% [14, 24]. Computation of odds ratio (OR); 95% confidence interval (CI); P-values and χ2-statistics were performed using PSPP® 1.0.1 (GNU General Public License version 2), R 3.5.1 (GNU General Public License version 2) with Yates’ correction and Medcalc® 18.6 (MedCalc Software bvba) [25, 26, 27, 28, 29, 30]. To avoid errors by zero values of the odds ratios, values were slightly modified by adding 0.5 to all contingency cells [31, 32]. Statistics were supported by the Department of Medical Statistics.

Our hypothesis of an improvement in hand hygiene compliance by ntroducing gloved hand disinfection was confirmed, with a significant increase from 31% (baseline) to 65% (post-interventional) before infection-prone procedures. This is especially impressive because we offered no training on general infection control or hand hygiene either before or during the study. Thus, gloved hand disinfection may be an effective single strategy for improving hand hygiene compliance before infection-prone procedures.

According to WHO’s requirements a hand rub must be performed before gloving and after removing gloves, e.g. when moving from dirty to clean tasks or when aseptic activities are interrupted and continued afterwards. This scenario is complex, time-consuming, and in a real-life setting not always realized [23, 33].
Achieved compliance of 31% (indication 2; phase 1) in our study seems to be low compared to hand hygiene compliance with other indications, e.g. 81% (indication 4), 56% (indication 3). Compared to other studies aiming at hand hygiene compliance, the improvement in our study represents a major improvement without increasing the workforce or costs. This is of great importance, since the most often self-reported and currently proven reason for HCWs’ non-compliance is lack of time and a forced workload, and this is in line with previous results for another strategy, namely process optimization [12, 13, 14, 15, 16]. Indication 2 is regarded as the most important for patients, is associated with the lowest compliance rates in most studies, and is least improved by most hand hygiene improvement strategies. Thus, gloved hand disinfection could help to improve patient safety in a resource-neutral, easy implementable way.

During the study the incidence density of severe infections decreased
(6.0 per 1000 vs 2.5 per 1000 patient-days) by trend. This is in line with the improvement for hand hygiene especially before infection-prone procedures. However, this is no definite proof of reduction of infections.

Notably, power calculation did not primarily address this secondary endpoint. Investigation of severe infections during gloved hand disinfection in a roll-out setting is warranted.

Hand hygiene compliance with indications 3 and 4 (after contact with body fluid or patient) were not expected to improve by gloved hand disinfection in this setting. This hypothesis was proven by our study, since hand hygiene compliance improvement in this case was not driven by the intervention itself. Interestingly, our study showed an increase in hand hygiene compliance after contact with patients’ surroundings. HA MDRO remained constant during all study phases independently from outpatients’ incidence. Thus, we infer that gloved hand disinfection did not represent a patient risk when safety rules were followed. On the contrary, gloved hand disinfection improved hygiene in those situations most relevant for patients.

Different strategies may influence hand hygiene compliance. System-related (e.g. ABHR dispenser availability and localization, implementation of standardized procedures, process simplification and optimizing or automated monitoring) and individual patient-related (individual training, feedback audits) strategies differ in implementation workforce and probability of sustained effectiveness [2, 15, 34, 35, 36, 37, 38]. Thus, as a system-related strategy, disinfection of gloves is probably a sustainable component of a multi-faceted infection control strategy.

Support by the staff is a basic requirement of implementation. HCWs rated the release of the gloved hand disinfection as an improvement or alleviation of personal working conditions. In fact, gloved hand disinfection was not perceived as a burden, but as a tool that made work easier.

There were limitations to this study. It was a single-centre study only on one stem cell ward. The data shown cannot easily be extrapolated to other settings. However, the study was initiated as a proof-of-principle study. At baseline, hand hygiene compliance was only at a moderate level, thus the effect could be overestimated with regard to settings starting at higher baseline levels. The study was designed to correct potential time and training effects from the ‘glove effect’. However, the significant ‘glove effect’ shown in phase 2 is no definite proof. The direct observation was intended to be performed in a completely anonymous manner without HCW anonymization. ICPs were asked to rotate HCW sequence when observing. Thus, observation bias cannot be excluded completely. Although direct observation is widely accepted as a reference standard to calculate hand hygiene compliance, there is no method to ensure compliance with gloved hand disinfection beyond the observation period.
Every entity of infection belongs to different transmission events and those that are related to hand hygiene compliance according to the WHO indications have not been investigated in detail. However, according to the national surveillance programmes we used the combined infection parameter as secondary endpoint. It may be useful to distinguish different entities in further studies to compare their responses to the hand hygiene compliance.

In conclusion, this study is the first to investigate gloved hand disinfection in real-work scenarios, demonstrating an improvement in hand hygiene compliance. Hand hygiene compliance was even improved before infection-prone pro-cedures, the situations with the highest impact on infections, and thus infection control. Notably, severe infections decreased by trend.
Taken together, gloved hand disinfection could be an easy implementable, resource-neutral tool as a new component within the infection control bundles. Settings with a high number of aseptic procedures and unsatisfactory baseline levels would benefit most, especially in times of HCW shortage.

Read the full article:  https://www.journalofhospitalinfection.com/article/S0195-6701(19)30258-0/fulltext?dgcid=raven_jbs_etoc_email

© 2019    P. Fehlinga,∗,’Correspondence information about the author P. FehlingEmail the author P. Fehling, J. Hasenkampb, S. Unkelc, I. Thalmanna, S. Horniga, L. Trümperb, S. Scheithauera


Epidemiology and impact of norovirus outbreaks in Norwegian healthcare institutions, 2005–2018

Outbreaks in healthcare settings affect vulnerable populations, disrupt normal routines and may spread to other healthcare institutions (HCIs). Outbreaks can be limited in extent by good routines for detection, management of cases and other infection-control measures [1]. Norovirus infection is most often seen in the winter months and is a common cause of outbreaks in HCIs [2] as it has a low infectious dose, short incubation period, and symptoms such as diarrhoea and vomiting which facilitate spread. Symptoms normally lasts around one to three days, but can be longer in hospital patients [3]; and in this type of setting, infection can lead to slower recovery from other illness and even death [4]. Norovirus can be divided into several genogroups and genotypes [5]. Genogroup II genotype 4 is the most prevalent genotype globally [6] as well as in the Nordic countries [6]. There is no vaccine and immunity is not well understood; at best it is strain-specific but probably only partial and shortlived as the virus readily undergoes mutation [7, 8]. Humans are the only reservoir of the virus and spread of the infection in outbreaks is particularly difficult to control because of the low infectious dose, its stability in the environment and efficient transmission by person-to-person contact and exposure through contaminated surfaces [9]. Norway has national recommendations on norovirus infection in long-term-care facilities (LTCFs) in which the most important measure is isolation or cohort nursing of sick residents. Exclusion of sick staff until 48 h after they are symptom free is also recommended [10]. In a hospital setting, the infection-prevention-control unit will have local procedures. There are around 60 hospitals and 950 LTCFs in Norway [11]. The responsibility for management of local outbreaks lies within the hospital or with the community medical officer (one in each of the 422 municipalities) for outbreaks in LTCFs. All suspected outbreaks in Norwegian HCIs, regardless of the causative pathogen, should be alerted by law to relevant actors, including the Norwegian Insititute of Public Health (NIPH), to facilitate communication and response [12, 13]. The aim of this study was to describe, for the first time, the epidemiology and impact of these outbreaks in order to identify areas which may improve outbreak response.

This study shows that norovirus outbreaks pose an important burden for HCIs all over Norway, especially in the winter months. In addition to affecting an already vulnerable population, this study shows that these outbreaks indeed also impact on the internal workflow and resources, with a conservative estimate of around 1800 days of absenteeism per year due to these outbreaks, during which staff would have to be covered for by other internal or external healthcare staff.

Surveillance of norovirus outbreaks exists in Germany and Scotland. In Germany, reporting of norovirus outbreaks in HCIs has been mandatory since 2001. In contrast to what is seen in Norway, outbreaks were smaller (median nine cases vs 15 in this study) and around 80% of norovirus outbreaks were reported from hospitals (vs 23% in this study) during the first 12 months after introduction of the system [15]. Varying ways of counting interdepartmental outbreaks, better collaboration with the local level or under-reporting from hospitals may explain this. In Scotland, surveillance of ward closures due to norovirus infection has been in place since October 2017. From then until week 26, 2018, 219 wards or bays have been closed due to confirmed or suspected norovirus [16]. This is markedly more than the 16 reported outbreaks in hospitals in Norway 2017/18, in a population of similar size. The occurrence of norovirus outbreaks has also been studied prospectively; Curran et al. [17] aimed to identify the index cases of norovirus outbreaks in the UK and Ireland in 54 acute and non-acute healthcare centres; only five out of the 54 included centres did not experience any outbreak during one winter. Also, Lopman et al. found that 171 inpatients units, had on average 1.3 gastroenteritis outbreaks in the 1-year follow-up period. Of these, 63%were caused by norovirus [2].

It was seen that a small proportion of residents at LTCFs were admitted to hospital during norovirus outbreaks. This may be necessary in severe cases despite the risk of spread from one institution to the next. Our results suggest that hospitals are affected by norovirus outbreaks earlier in the epidemiological year than LTCFs. Potentially because there is a greater influx of patients from the community, where norovirus circulates, to and from hospital than between the community and LTCFs as also suggested by Sadique et al. [18]. This finding, however, could only be evaluated on the national level, as the number of reported outbreaks is low. That the start of the outbreak season seemed to start earlier in hospitals than in LTCFs, at least at the national level, suggests an opportunity that with improved communication, hospitals could alert LTCFs within the same area in order to prepare for the outbreak season and limit the extent of further outbreaks.

Slightly more cases were seen amongst healthcare staff in hospitals compared to LTCFs, though no information about the number of healthcare staff at risk during the outbreaks is available. The patient or resident:healthcare-staff ratio varies with the level of care needed and type of department and will most often be higher in hospitals. Whether this explains the slightly higher proportion of staff affected in hospital outbreaks is unknown. Nevertheless, healthcare staff do represent a big proportion of cases in the reported outbreaks, indicating a need for improved compliance with infection prevention and control measures. Outbreaks are an economic burden for HCIs, both as infected staff need to be covered for during illness and ‘quarantine’ and cohort nursing may require extra staff.

The relatively high number of people infected during an outbreak underscores the infectiousness of norovirus and norovirus can serve as a worst-case scenario for introduction of other, more virulent, person-to-person transmitted pathogens into HCIs. With the current information captured in the alert system, it was not possible to assess the extent to which national recommendations were followed and/or which infection prevention control procedures are in place locally. But the high number of people infected do suggest a potential for limiting spread, for example by having systems and routines in place before outbreaks happen, as advised in the national recommendations.

Even though NIPH routinely promotes the web-based outbreak alert system and teaches outbreak management, both at the regional and national level, in order to strengthen local capacity and encourage the use of the alert system, under-reporting is still apparent. If the under-reporting of outbreaks reflects a lack of awareness concerning outbreak management, or a lack of communication between the LTCF and the municipal doctors about ongoing outbreaks, it is worrying. The alert system serves to alert relevant stakeholders so that outbreak support and advice can be given in an early phase. The alert system can also be used for statistical purposes to get a national overview of outbreaks which will facilitate targeted capacity building, guideline development and communication messages in order to increase awareness and investigate whether there are any changes in trends.

Limitations
This study has three main limitations: the sensitivity of the norovirus outbreak definition and under-reporting of number of outbreaks and number of cases in each outbreak. Classification as a norovirus outbreak is dependent on local definitions. The infection prevention measures for diarrhoea and vomiting are the same for all the common pathogens in this setting. Samples were submitted for testing in two thirds of the outbreaks and most were confirmed as norovirus at the time of reporting or updating. Information about the genotypes of the isolated strains from each outbreak or of dominant strain of the season was not available. For this reason, it was not possible to evaluate the effect of the genotype.

Concerning under-reporting, the number of outbreaks notified through the outbreak alert system and reported here, most likely represent only a proportion of all norovirus outbreaks occurring in Norwegian HCIs. Although outbreaks were reported from all parts of Norway, some areas had not reported any outbreaks of any kind during the 13-year study-period.

The alert system is used for the mandatory alerting of suspected outbreaks. Reporting should happen as soon as the outbreak is suspected and before the full extent of the outbreak is known. Even though the system sends a reminder to update the details about the outbreak, including the case numbers, three weeks after the initial alert, some under-reporting of the extent of each outbreak is expected.

This is the first comprehensive description of norovirus outbreaks in HCIs in Norway. Even though the analyses revealed under-reporting that is unlikely to reflect the real epidemiology, this study clearly shows that these outbreaks affect both hospital and LTCFs all over Norway. Norovirus infection may delay medically important procedures and recovery, but also presents a major challenge to the functional ability of an HCI and its resources as up to one-half of cases were healthcare personnel.

It is recommended that NIPH promotes the outbreak alert system to increase reporting and improve the quality of the data and strengthen local capacity for outbreak management and general infection control. It is also recommended to investigate possibilities for improving communication between hospitals and LTCFs regarding when the norovirus season starts and progresses, for hospitals and LTCFs to be prepared and to take early action to prevent and limit further spread.

Read full article: https://www.journalofhospitalinfection.com/article/S0195-6701(19)30268-3/fulltext?dgcid=raven_jbs_etoc_email

© 2019 The Authors. Published by Elsevier Ltd on behalf of The Healthcare Infection Society.


Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection

– Ethanol and other alcohols such as iso-propanol or n-propanol are typically used for hand disinfection or surface disinfection. An ethanol concentration of 40% will not be found in alcohol-based hand rubs because the bactericidal efficacy will be too low to fulfill European efficacy standards such as EN 1500. Even hand rubs based on 60% or 70% often fail to meet the EN 1500 efficacy requirements although the alcohols are effective against E. faecium and E. faecalis [11, 14, 15, 16]. In that respect it is of concern that the use of E. hirae may yield a sufficient efficacy against enterococci although E. faecium and E. faecalis are less susceptible.

Nosocomial infections or hospital-acquired infections (HAIs) are a major patient safety issue in hospitals.

The most frequent nosocomial infections are pneumonia (usually ventilator-associated), urinary tract infection (usually catheter-associated) and primary bloodstream infection (usually associated with the use of an intravascular device) [1]. Virtually every pathogen has the potential to cause infection in patients but only a limited number of bacterial species is responsible for the majority of HAIs. Among them Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and enterococci are the most common [2]. Enterococci account for about 10% of hospital-acquired bacteremia cases and are a major cause of sepsis worldwide [3]. HAIs caused by enterococci are difficult to treat due to acquired resistance to many classes of antibiotics [4]. Considering the severity of the consequences of nosocomial infections, such as morbidity, mortality, prolonged stay, costs, and treatment problems, it is all the more important that preventive measures in hospitals and other health facilities are fully effective [5]. Targeted disinfection, with species that are considered to be the most resistant representatives of a whole range of human pathogenic microorganisms and, due to their role in nosocomial infections, also include enterococci. As part of the standardization efforts to determine the efficacy of disinfectants at European level, the enterococcal strain Enterococcus (E.) faecium, formerly used for chemical and chemo-thermal disinfection processes, was replaced by E. hirae. E. faecium is currently only used for testing thermal disinfection processes, such as for instance for testing laundry disinfection processes at temperatures above 60 °C [6]. The differences in heat tolerance between the enterococcal species is already well described resulting in the use of E.hirae for testing chemical disinfectants and E. faecium for chemo-thermal and thermal processes [7, 8]. Pidot et al. have shown in 2018 that some multidrug-resistant E. faecium isolates isolated recently are more tolerant to 23% iso-propanol than older isolates suggesting an adaptive cellular response [9]. Overall, the chemical susceptibility of two common clinical species (E. faecalis and E. faecium) and the commonly used test species (E. hirae) has not yet been sufficiently investigated [10, 11, 12]. The aim of this study was therefore to find out whether E. hirae is a suitable species to evaluate the efficacy of biocidal agents against the clinically relevant species E. faecalis and E. faecium. Therefore, we determined the in vitro bactericidal efficacy of five substances from commonly used groups of biocidal agents (aldehydes, alcohols, surfactants, oxidizing agents and halogens) on E. hirae, E. faecium and E. faecalis according to the European Norm EN 13727 [13].effective procedures and correctly performed, is one of the most important measures to interrupt the transmission of pathogens in hospitals. In Europe, the microbicidal effectivity of any disinfection procedure must be evaluated and confirmed in accordance with national or international standards and norms in vitro and under practical conditions before it can be used in hospitals [6]. These efficacy tests are performed with defined test

Our data show that the testing of disinfectants based upon a culture collection E. hirae strain alone may not represent the sensitivity of other collection Enterococcus spp. with more clinical relevance. At a 5 min exposure time the current EN 13727 test species E. hirae was found to be more tolerant to 0.2% glutaraldehyde and 0.0125% peracetic acid compared to E. faecium and E. faecalis whereas it was more susceptible to 40% ethanol and 3% sodium hypochlorite. Only with 0.00125% benzalkoniumchloride (15 min) the susceptibility of E. hirae was between E. faecium and E. faecalis. Based on these data E. hirae is a suitable species when bactericidal activity needs to be determined against enterococci with the biocidal agents glutaraldehyde and peracetic acid. It may, however, not be a suitable species for ethanol at 40% or sodium hypochlorite at 3% if the bactericidal activity shall include the clinical pathogens E. faecium and E. faecalis.

Ethanol and other alcohols such as iso-propanol or n-propanol are typically used for hand disinfection or surface disinfection. An ethanol concentration of 40% will not be found in alcohol-based hand rubs because the bactericidal efficacy will be too low to fulfill European efficacy standards such as EN 1500. Even hand rubs based on 60% or 70% often fail to meet the EN 1500 efficacy requirements although the alcohols are effective against E. faecium and E. faecalis [11, 14, 15, 16]. In that respect it is of concern that the use of E. hirae may yield a sufficient efficacy against enterococci although E. faecium and E. faecalis are less susceptible.

The situation is different in surface disinfection. Many low alcohol products are available for immediate use in the patient environment, often as presoaked tissues [17]. Low alcohol concentration has the advantage of a better compatibility with plastic surfaces which are now commonly found in healthcare such as mobile phones or tablet computers [18]. Based on our data obtained with suspension tests it seems to be possible that low alcohol surface disinfectants which are effective against E. hirae do not provide the same level of bacterial killing against E. faecium or E. faecalis. In 2014 a dramatic increase of infections caused by vancomycin-resistant enterococci has been described [19]. The reasons for the increase are still unknown. But it is known that Enterococcus spp. can survive on inanimate surfaces between 4 days and 4 months [20]. It is therefore important to ensure a sufficient bactericidal efficacy of alcohol-based surface disinfectant against Enterococcus spp. However even with higher concentrations of alcohol it is essential to apply a sufficient volume. Approximately 10% of the solution is released during wiping when a soaked tissue is used [16, 21]. It has been shown previously that the application of a low volume of an effective alcohol results in failure to meet the efficacy requirements [16].

Sodium hypochlorite at 3% was also more effective in 5 min against E. hirae and less effective against E. faecalis and E. faecium. It is a biocidal agent commonly used in many countries for surface disinfection [22]. Our findings with E. faecalis appear plausible because sodium hypochlorite at 2.5% has been described to achieve at least 5 log10 against ATCC 35550 (10 min) and ATCC 29212 (20 min) [23, 24]. The very low effect of 3% sodium hypochlorite even in 15 min against E. faecium is of concern and should be followed up with more research on the possible implications for its use in healthcare.

In this study we have only used culture collection strains from each of the three Enterococcus spp. in order to compare the susceptibility of potential test strains for disinfectant efficacy testing. We have not used any Enterococcus spp. clinical isolates. That is why we cannot evaluate whether the different biocidal agents would reveal a similar bactericidal activity against clinical isolates of each of the three Enterococcus species.

Another limitation of our study is that all experiments were carried out using a low organic load described as clean conditions. That is why we are unable to describe if similar or other results would be obtained under dirty conditions. Clean conditions were chosen because they reflect the majority of applications of these agents. Alcohol-based hand rubs are applied to clean hands, ethanol is a typical biocidal agent used for hand disinfection. Instrument disinfectant should be used on cleaned instruments, glutaraldehyde, benzalkonium chloride and peracetic acid are typical agents used for instrument disinfection. Surface disinfection is often performed without prior cleaning, benzalkonium chloride and sodium hypochlorite are typical agents used for surface disinfection. With sodium hypochlorite it has been described before that the bactericidal efficacy will be impaired in the presence of organic load [25].

E. hirae is a suitable species when a bactericidal activity should be determined against enterococci with glutaraldehyde and peracetic acid. E. hirae may not be a suitable species for ethanol at 40% or sodium hypochlorite at 3% if the bactericidal activity shall include the clinical pathogens E. faecium and E. faecalis.

By Miranda Suchomel, Anita Lenhardt, Günter Kampf, Andrea Grisold

https://www.journalofhospitalinfection.com
https://www.journalofhospitalinfection.com/article/S0195-6701(19)30345-7/fulltext

For references: https://www.journalofhospitalinfection.com/article/S0195-6701(19)30345-7/references


Hand hygiene helps reduce HCAIs (healthcare-associated infection)

Chris Wakefield, Vice President at GOJO Industries-Europe Ltd, highlights how hand hygiene systems reduce the spread of healthcare-associated infection (HCAI)

It is estimated that 300,000 patients a year in England acquire a healthcare associated infection (HCAI) as a result of care within the NHS. Such infections draw large attention from patients, regulatory bodies and the media. Not only because of the magnitude of the problem – after all, they are associated with morbidity, mortality and the financial cost of treatment – but, also, because most are preventable.

Despite being avoidable, HCAIs continue to present a major threat to our public health. They are particularly difficult to eliminate due to the speed and ease that they can be transmitted – and because of their long-life span. Did you know, for example, that MRSA can live up to nine weeks, whilst C.Diff spores can live up to five months? Or that they can be spread through both direct and indirect contact?

Studies have shown that contaminated hands can sequentially transfer some viruses to up to seven surfaces, and that fourteen people can be contaminated by touching the same object one after the other. Perhaps itʼs not surprising then, that research indicates that you have a 50/50 chance of picking up a dangerous pathogen anytime you touch anything or anyone in a hospital.

Such outbreaks can have serious repercussions; including the increased risk to the lives of vulnerable patients, disruption of services and reduced clinical activity, such as the enforced closure of hospital wards, cancelled admissions and delayed discharges. There is also the cost of treatment to factor.
Indeed, a report by the National Audit Office estimated that a reduction in the rates of MRSA bloodstream infections saved the NHS in England between £45 million-£59 million in treatment costs between 2003/4 and 2008/9. It also identified that by reducing the rate of C. difficile infections, between £97 million-£204 million was saved in treatment costs between 2006/7 and 2007/8.

Going back to basics

A great deal of scientific research has shown that, if properly implemented, hand hygiene is the single most important, easiest and cost-effective means of reducing the prevalence of HCAIs and the spread of antimicrobial resistance. In fact, research shows it can cut the number of HCAI cases by up to 50%. Several other studies have also demonstrated that handwashing virtually eradicates the carriage of MRSA which invariably occurs on the hands of healthcare professionals working in intensive care units. An increase in handwashing adherence has also been found to be accompanied by a fall in MRSA rates.
In order to reduce the spread of illness, everyone has to engage with hand hygiene practices – not only healthcare workers, who already make this a part of their daily lives, but visitors and patients too. As a founder member of the World Health Organization (WHO) Private Organizations for Patient Safety group, GOJO is a strong advocate of the ‘total solutionʼ approach to making hand hygiene second nature to everyone in a healthcare setting. We believe that, to successfully change behaviour, a triple-pronged approach is required.

Firstly, handwashing facilities must be accessible and dispensers easy to use. The WHO recommends that an adequate number of appropriately positioned hand hygiene facilities should be readily available at the point of care.

Secondly, the high frequency with which healthcare workers clean their hands means that the formulations must be gentle yet effective against germs, complying with key hospital norms EN 1500, EN 14476 and EN 12791. Studies have also shown that using an alcohol-based handsanitising rub can improve hand hygiene practice, since it is quicker, is microbiologically more effective and is less irritating to skin than traditional hand washing with soap and water.
Finally, eye-catching signage is very effective as a prompt, especially at key germ hot-spots such as washrooms and waiting areas. Hand hygiene facilities must remain well-stocked and maintained at all times too.

Getting smart

Although evidence supports a ‘back to basicsʼ approach, digital innovation also has a role to play. GOJO has spent many years developing advanced formulations and high-tech dispensers, and has recently harnessed revolutionary smart technology to create its SMARTLINK™ Electronic Monitoring Solutions. These two mobile apps are a smarter way to help reduce the maintenance time spent on dispensers, and measure hand hygiene performance – ultimately helping to prevent the spread of germs.
Combining the latest technology with the simple act of hand hygiene, and working together to put effective systems in place, we can reduce the spread of HCAIs. GOJO, the leading global producer of skin health and hygiene solutions for away-from-home settings, is your specialist partner in healthcare hygiene.

For a tailored, effective, total solution for your setting, or for more information, please call +44 (0)1908 588444,
email infouk@GOJO.com or visit www.GOJO.com

 

By Kerrie Doughty
Trade Marketing & Communications Manager GOJO Industries-Europe
Tel: +44 (0)1908588457
infouk@gojo.com
www.GOJO.com
www.twitter.com/GOJO_Hcare
www.twitter.com/GOJO_Europe

 

 

References
1. https://www.nice.org.uk/guidance/qs61/chapter/introduction
2. Hata B et al. Clin Infect Dis 2004; 39k1182 | Kramer A et al. BMC Infect Dis 2006; 6k130 | Havill NL. et al. Infect Control Hosp Epidemiol 2014; 35k445 | Weber DJ et al. Infect Control Hosp Epidermiol 2015.
3. Barker J, Vipond IB, Bloomfield SF. J Hosp Infect 2004,58k42-494 Stiefel U et al. Infect Control Hosp Edipdemiol 2011; 32k185.
4. 2008 SDA Clean Hands Report Card® sponsored by the Soap and Detergent Association.
5. 24 &25 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1
6. 26 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1
7. 2,3 & 35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1


Ebola is back – can it be contained?

The current outbreak of the deadly virus in the DRC has been called the most complex public health emergency in history. Peter Beaumont describes his recent visit to the DRC and Sarah Boseley discusses how the 2014 outbreak was eventually contained. Plus: Helen Pidd on what has been achieved with the ‘northern powerhouse’

CLICK ON IMAGE to go to podcast

The latest outbreak of Ebola, with more than 2,200 cases and more than 1,500 confirmed deaths in just over a year, is the second largest in history, despite the recent availability of an effective experimental vaccine. Political, security and cultural complications – not least a refusal to believe that Ebola exists – have thwarted efforts to overcome the Democratic Republic of the Congo’s deadly outbreak.

Senior global development reporter Peter Beaumont tells Anushka Asthana about his recent trip to North Kivu, which is at the heart of the recent outbreak. He discusses why some health officials are calling it the most complicated public health emergency in history. Guardian health editor Sarah Boseley, who reported on the 2014 outbreak, looks at how that was contained – and why the situation is potentially far more frightening this time round.

And: the Guardian’s northern editor, Helen Pidd, looks at whether the “northern powerhouse” has been a success five years after its creation.

______________________________________________________________________

Publihed by the Guardian,

Presented by Anushka Asthana with Sarah Boseley, Peter Beaumont and Helen Pidd, produced by Nicola Kelly, Elizabeth Cassin, Iain Chambers and Axel Kacoutié; executive producers Nicole Jackson and Phil Maynard


Stay healthy at the hospital

Protect yourself to ensure a speedy recovery and avoid infections and readmission.

Whether you go in for surgery, testing, or an outpatient procedure, your hospital stay can pose further health risks if you are not careful.

“Your potential risks depend in part on why you have to go into the hospital and the facility itself, but there are steps you can take to minimize your risk, especially when it comes to developing hospital-acquired infections that can lead to a longer hospital stay or readmission,” says Dr. Erica Shenoy, an infectious diseases specialist and associate chief of infection control at Harvard-affiliated Massachusetts General Hospital.

Here are some steps to take to ensure a safe hospital visit before, during, and after your stay.

BEFORE

Ask questions.

It can be nerve-racking to ask questions, no matter how small they feel, but you need to muster up the courage and make the most of your interactions with medical staff and during consultation, says Dr. Shenoy. “Just like you, they want you to have a quick and uncomplicated recovery and are open to your inquiries — but you have to ask.”

What should you ask?
H
ere are some questions that can help you manage your own expectations and plan ahead for recovery:

How long will I be in the hospital?

What is the expected recovery time?

Am I likely to need rehab or at-home support? Do I have a choice between the two?

“If at all possible, bring your list of questions and a family member or friend with you during any question–and-answer session,” says Dr. Shenoy. “This will help you feel more confident, and your companion can take notes.”

Get screened for possible infections. Depending on your procedure, you could be at high risk of postoperative infections. For people undergoing knee or hip replacement, common bacteria they may have on their skin can increase the risk.

“About 30% of people carry the bacteria Staphylococcus aureus — or staph — on their skin, without it causing any problems or actual infection,” says Dr. Shenoy. “But this bacterium is implicated in many postoperative infections, which is why your doctor may ask you to get screened for staph colonization, which often involves using a cotton swab on the inside of your nose.”

If you do have staph on your skin, the doctor may prescribe several days of a special bath soap and nose ointment, which together have been shown to decrease — but not eliminate — the risk of developing this type of infection.

Review your medications.

Talk with your doctor about your medications— prescription and over-the-counter — to determine what you should stop taking before your procedure or whether you should change any dosages. “Some drugs, such as blood thinners, may require modifications,” says Dr. Shenoy. Your doctor may provide you with a pre-op checklist so you know what to take and what not to take.

Know the risks.

You may not be aware of all the potential risks. “Even the simplest of procedures has some risks, so it’s important to know what they are even if the odds are quite low,” says Dr. Shenoy. “Knowing the risks can help you make a more informed decision about whether or not to proceed, and also what signs of complications to look for during the recovery period.”

DURING

Practice good hygiene. Doorknobs, handrails, countertops — anything you can touch has the potential to harbor bacteria. Always wash your hands with water and soap before eating and after using the bathroom. Alcohol-based sanitizers are useful outside of those specific circumstances.

All doctors and nurses should wash their hands or use alcohol-base hand sanitizer before they examine you. If not, ask about it. “Many will perform hand hygiene in your presence, but don’t be afraid to ask if they’ve done so before they interact with you,” says Dr. Shenoy.

If your provider expects to encounter blood or body fluids when examining you, he or she may add other protective gear such as gloves and a gown. A clinician may also wear protective equipment if you have a history of harboring particular bacteria.

Know your contacts. Before you leave, get a list of contact information for anyone you need to call regarding your recovery. You’ll also need the dates, times, and locations of all follow-up appointments.

AFTER
Look for warning signs.

When you return home, watch for red flags for when you should seek immediate care — for example, changes in pain, redness or swelling, or fever. “That’s where the list of contacts come in handy,” says Dr. Shenoy. “Reach out to your physicians if you experience symptoms that cause you concern. They can help determine the best next steps.”

Published: June, 2017

https://www.health.harvard.edu/healthcare/stay-healthy-at-the-hospital


Estimated hospital costs associated with preventable health care-associated infections if health care antiseptic products were unavailable

Objectives: Health care-associated infections (HAIs) pose a significant health care and cost burden. This study estimates annual HAI hospital costs in the US avoided through use of health care antiseptics (health care personnel hand washes and rubs; surgical hand scrubs and rubs; patient preoperative and preinjection skin preparations).

Methods: A spreadsheet model was developed with base case inputs derived from the published literature, supplemented with assumptions when data were insufficient. Five HAIs of interest were identified: catheter-associated urinary tract infections, central line-associated bloodstream infections, gastrointestinal infections caused by Clostridium difficile, hospital- or ventilator-associated pneumonia, and surgical site infections. A national estimate of the annual potential lost benefits from elimination of these products is calculated based on the number of HAIs, the proportion of HAIs that are preventable, the proportion of preventable HAIs associated with health care antiseptics, and HAI hospital costs. The model is designed to be user friendly and to allow assumptions about prevention across all infections to vary or stay the same. Sensitivity analyses provide low- and high-end estimates of costs avoided.

Results: Low- and high-end estimates of national, annual HAIs in hospitals avoided through use of health care antiseptics are 12,100 and 223,000, respectively, with associated hospital costs avoided of US$142 million and US$4.25 billion, respectively.

Conclusion: The model presents a novel approach to estimating the economic impact of health care antiseptic use for HAI avoidance, with the ability to vary model parameters to reflect spe-cific scenarios. While not all HAIs are avoidable, removing or limiting access to an effective preventive tool would have a substantial impact on patient well-being and infection costs. HAI avoidance through use of health care antiseptics has a demonstrable and substantial impact on health care expenditures; the costs here are exclusive of administrative penalties or long-term outcomes for patients and caregivers such as lost productivity or indirect costs.

Keywords: anti-infective agents, topical, costs and cost analysis, hospital infections, antiseptic agents

Introduction

Health care-associated infections (HAIs), which the Centers for Disease Control and Prevention (CDC) estimates occur in one of every 25 acute care hospitalizations,1 are of paramount interest in the US. HAIs in hospitals tracked by the CDC1 include central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), surgical site infections (SSIs), hospital-acquired pneumonia (HAP), including ventilator-associated pneumonia (VAP), and gastrointestinal infec-tions caused by Clostridium difficile. HAIs are an important metric for evaluating quality in health care institutions such that they are tracked by the Centers for Medicare and Medicaid Services (CMS) in its Hospital Compare program.2 High scores (poor per-formance) can lead to penalties, such as those associated with the Hospital-Acquired Condition Reduction Program established by the 2010 Patient Protection and Affordable Care Act; specifically, patients with certain infection types cannot have the diagnosis-related group for their hospital admission changed to a more complex code to obtain a greater reimbursement from CMS to cover the increased hospital costs associated with the infection. Consumer-focused hospital ratings may also consider HAI rates in their evaluations. With an increase in the prevalence of resistant organisms and incentives to discharge patients quickly while minimizing readmission rates, concerns about HAIs will likely continue to increase.
Despite an obvious public health mandate to minimize the occurrence and impact of HAIs, identifying the most cost-effective or even effective strategies to do so is a source of uncertainty. A number of strategies have been proposed, ranging from environmental controls and modifications, to changing physical contact (eg, avoiding handshaking), to educating patients and health care providers on hand hygiene techniques, to using biosensors to identify areas in need of disinfection. Invariably, hand hygiene is a part of any effort to control HAIs. Hand hygiene programs typically include multiple components, including the more obvious ones, like well-placed cleansers and sinks, and structural elements, such as compliance assessments and feedback mechanisms.3
Recently, in the US, there has been discussion about the merits of various over-the-counter antiseptics,4 including those used in health care settings, such as health care person-nel hand washes and rubs, surgical hand scrubs and rubs, and patient preoperative and preinjection skin preparations.
Introducing new interventions to decrease HAIs has inher-ent costs. For example, replacing surfaces with nonconductive copper has been shown to be effective5 but likely requires a substantial initial capital investment. Costs may be distrib-uted by replacing surfaces one floor or ward at a time, yet there is likely to be both cost and interruption to care. Other interventions, like adding reminders about hand washing and stronger messaging, may be less costly to implement but may require a steady stream of funding to maintain.
The research question underlying this paper is regarding the cost of not maintaining the status quo: what is the cost associated with removing an existing effective component of programs to avoid HAIs – the use of health care anti-septic products? The objective of this project is to estimate the incremental hospital costs associated with preventable illnesses that would no longer be prevented if certain health care antiseptics were to be eliminated. A total national esti-mate of the potential lost benefits from elimination of these products is based on a national number of cases of HAIs, assumptions about the proportion of all HAIs that are overall preventable, assumptions about the proportion of preventable HAIs that are associated with health care antiseptics, and the hospital costs for these illnesses (specific to each infection) obtained from the published literature. The end product of this effort is a spreadsheet model that incorporates various input parameters and can be used to test and explore potential outcomes of limiting health care antiseptic products. The model accounts for the sources of uncertainty in several ways – it provides a range of input values rather than a single base case and also allows the user to input alternative values should the available selections be inadequate.

Methods
The model is designed as a simple spreadsheet tool without a single set of default values; instead, a range of plausible input parameters based on the published literature is provided, from which a user can select preferred input values. Four basic types of information are required to populate the model: first, the number of cases of each type of HAI of interest; second, the proportion of all HAIs that are preventable; third, the proportion of preventable HAIs attributable to the use of health care antiseptics; and finally, the average hospital cost associated with each HAI. Essentially, the calculation starts with an estimate of the number of HAIs in the US in 2011 (the most recently published data), reduces that number to account for the proportion of infections that are considered unpreventable overall and those that are preventable through use of health care antiseptics, and then assigns corresponding hospital costs to each of the remaining HAI cases. The result-ing total infection count and cost equals the annual national estimate of potentially lost benefits that would be expected to occur if health care antiseptic products were eliminated.
Literature searches focusing on clinical efficacy and hospital costs were conducted to identify published values for model input parameters using the National Library of Medicine’s PubMed database. After PubMed searches, targeted searches of authors whose works are prominent in the field and government or quasi-government bodies that engage in documenting or improving the performance of health care systems (eg, Centers for Disease Control and Prevention, World Health Organization, and Agency for Healthcare Research and Quality) were also conducted.
Reviews and meta-analyses were examined for evidence of original data relevant to this analysis. For both the clinical and economic searches, reference lists of identified papers were also reviewed for relevant literature.
For the clinical efficacy component of the search, designed to identify papers that could provide information on the number of HAIs, preventability of HAIs, and the proportion of prevention attributable to the use of health care antiseptics, initial search terms (Medical Subject Headings [MeSH], keywords, and text fields) including “handwash”, “healthcare”, “hospital”, and “rate” were used to identify papers published in the previous 25 years in English with human subjects. Studies on the number of HAIs were limited to the US, but for identifying estimates of preventability and proportion attributable to health care antiseptic use, no country or region limitations were used, as it was determined that these should not be excluded a priori but rather reviewed on a case-by-case basis.
For the economic component of the search, search terms (MeSH, keywords, and text fields) included “healthcare”, “hospital”, “infection”, “costs and cost analysis”, and related subheadings suggested by PubMed; filters were applied to identify papers published in the previous 10 years in English with human subjects. A shorter time frame was selected than that for the clinical efficacy search to minimize variation in treatments and associated costs that could occur over a longer time frame. Papers on costs were limited to those providing estimates for the US. Studies were considered for this analysis if they presented hospital costs per case, rather than per household or total expenditures associated with an outbreak, and if they reported on a broad mix of patients. Costs were inflated to October 2015 US$ using the Consumer Price Index for medical care published by the Bureau of Labor Statistics (series ID CUUR0000SAM).
Abstraction of the cost estimates was a multistep process. Most papers provided a high and low estimate, rather than a single point estimate or average. To be consistent with the model’s approach of providing a range of estimates, an average of all the low estimates for each HAI and an aver-age of all the high estimates for each HAI were estimated.

In this manner, the estimates in the model not only inherently reflect uncertainty in the literature but also benefit from some aggregation of the estimates available.

Results

Specification of input parameters

Number of HAIs
Three recent studies provide estimates of the number of HAIs annually observed in the US.1,6,7 The estimates from these papers are provided in Table 1. These studies estimate the number of cases of various infections but do not attempt to link infections to specific causal organisms. The model similarly makes the simplifying assumption that the distribu-tion of pathogens within and across HAIs is not relevant to the number of HAIs. This is necessary given the lack of data on the distribution of pathogens on a national level and the lack of detail on other input parameters (eg, prevention and costs) by pathogen. It is not unreasonable to think that there could be differences in the preventability of HAIs based on changes in the distribution of the causal organisms, if health care antiseptic products are more effective against some pathogens than others, and the costs of treating the same HAI caused by different pathogens could vary. However, none of these data are available and therefore the model does not allow for specification of pathogens.

Proportion of HAIs that are preventable
There are various estimates in the literature for the propor-tion of HAIs that are preventable;8–10 best practices, including hand hygiene and many other interventions, do not eliminate HAIs entirely. Cases that are not preventable are eliminated from this analysis at this stage of the calculations, as the use of health care antiseptics could not have an effect on these already-existing infections. For example, Umscheid et al10 estimate that only 65%–70% of CLABSIs and CAUTIs and 55% of cases of VAP and SSIs are preventable. In their comprehensive review of the impact of various interventions, Harbarth et al also found wide variation in the proportion of preventable infections across settings and patient types, but they suggest that 20% is a reasonable proportion of HAIs that are preventable.9 Based on the wide range of values in the literature, the model includes multiple options for the propor-tion of HAIs that are preventable (20%, 35%, 50%, and 70%). A prespecified common value can be applied to all infection types or prespecified individual values can be applied to each type of infection. Alternatively, the model can be customized by providing a common user-specified value to be applied to all infections or by providing individual user-specified values to be applied to each type of infection.

Number of prevented cases attributable to health care antiseptics
Multiple studies were considered in developing reasonable model inputs for attributable cases.11–16 The range of values provided in these studies was used in the model, rather than a point estimate (eg, the average of all values provided in the studies), for the reduction of cases associated with health care antiseptic use. As with other model inputs, the simplifying assumption that use of health care antiseptics would prevent cases of all types of HAIs equally, regardless of pathogen, was made. At this time, there are insufficient data to assign different patterns of prevention by pathogen. The model allows the user to choose between providing individual values for each HAI type in addition to the common value for all HAI types, and selecting from prespecified values. These prespecified values, 10%, 20%, and 30%, were not based on specific studies but are intended to reflect a conservative range of estimates in the literature.

Costs for each HAI
A number of reviews and summary papers were found during the clinical portion of the literature search that helped guide the search for primary data sources. For example, Scott7 pub-lished a national estimate of HAI counts that also estimated hospital costs in the US. To account for variation of cost estimates and methods in the reviewed literature, a range of costs for each type of HAI (inflated to October 2015 US$) was used in the model. Table 2 shows these ranges and the studies from which they were obtained. Several studies identified in the search were excluded, because they aggregated infections rather than presenting the infections of interest separately, or included a very specific population (eg, only pediatric or only elderly) or a small set of surgi-cal interventions or settings, or did not include the year in which costs were presented. After inflating cost values to October 2015 US$, estimates were aggregated by infection by taking the average of available low and high estimates for each infection type.

Based on the findings, the potential incremental hospital cost burden of hospital-acquired infections avoided by the use of health care antiseptics is between US$142 million and US$4.25 billion annually in the US. These results are presented in Table 5.
The results presented here provide a low and high estimate of the potential increase in cases and medical expenditures associated with elimination of health care antiseptic use. It is expected that actual potential increases would fall somewhere between these low and high estimates.
Given the uncertainty around many of the estimates in this model and our decision to use low and high estimates for model inputs rather than single values, traditional sensitivity analyses are not appropriate. Instead, we used values from Zimlichman et al’s 2013 meta-analysis17 as a comparison for hospital costs (number of cases prevented was not compared). The estimated avoided costs based on Zimlichman et al’s meta-analysis range from US$308 million to US$3.33 billion, which fall within the range of our model results. As with the low and high values discussed previously, the low end of this range is estimated using the number of current annual cases from Magill et al1 and the high end using the estimate from Scott.7

Discussion
The purpose of this model is to help guide decision-making in the face of uncertainty. The model is a representation of the complex real-world relationships among changing rates of infections, hospital costs, and the potential impact of health care antiseptics. In the face of uncertainty about the continued availability of health care antiseptics, the model reflects the current state of knowledge while providing the opportunity to explore a variety of scenarios. The low and high scenarios presented in this paper can be used to understand the potential economic impact of a change in availability of health care antiseptics on human health and hospital costs in the US. Though the findings estimated here cover a broad range due to the breadth of existing data used in the model, they are indicative of the potential impact of changes in availability of health care antiseptics at the national level. The range of

estimates can be narrowed as new data become available for the model. In addition, the uncertainty in the model may be substantially minimized when applied to local, institution- or system-specific situations, since input data are generally better understood at the local level. Ideally, the model could be applied to explore the local impact of antiseptic avail-ability to aid in decision-making, in addition to projecting values nationally.
There are multiple sources of uncertainty associated with the estimates used as model input parameters. We address how the model incorporates and manages this uncertainty across each of the four main model inputs in turn. First, there are challenges in identifying the total number of HAIs nationally. The studies selected for use in this model are based on reported infections as part of surveillance programs rather than administrative claims data to identify events. A recent review and meta-analysis of the accuracy of using administrative data to identify HAIs18 found inconsistencies across types of infections in terms of sensitivity and specific-ity. This, as well as earlier work that suggests “traditional” surveillance reporting is superior to other approaches for identifying HAIs,19 supports our avoidance of administrative claims data in the base case estimates but points to difficul-ties in quantifying the number of HAIs. The same surveil-lance reports suggest that rates of HAIs are higher among patient populations who are younger, older, or otherwise compromised,20 which both validates our decision not to include data from these studies and suggests that once these more severe patients are included, their higher hospital costs might mean our general population approach underestimates infections and costs. Additionally, the process of attribution on the part of the hospital is complex; determining whether an infection is health care-associated can be challenging, particularly for patients who have had multiple health care encounters prior to the hospital admission. The model is limited to infections that are treated in a hospital setting, but the problem of infections acquired in long-term care is known to be substantial.21 If it were possible to quantify the number and treatment costs for health care-associated infections in other settings, estimates of the national impact of HAIs would increase. Lastly, also related to the count of HAIs included in this model, the analysis was limited to bacterial infections only. However, health care antiseptics, particularly alcohol-based hand rubs and gels, may have a role in preventing viral conditions.22 Thus, the findings of this study could be considered to be conservative and benefits would increase if viral conditions were included in the model. At this point, there are insufficient data to add the estimates for viral infections to the model but future studies may permit it.
A second source of uncertainty is related to estimating the proportion of cases prevented by the use of health care antiseptics. This aspect of uncertainty is challenging because, in accordance with the World Health Organization guide-lines,23 the use of health care antiseptics is only one com-ponent of typical multipart strategies to address hygiene. In their meta-analysis, Schweizer et al point out that more than three-fourths of interventions included bundles with multiple components rather than the single-intervention studies that have been observed in previous reviews (see Schweizer et al for a full listing of the studies reviewed).24 Rarely do studies report on a comparison between similar cohorts in which the use of health care antiseptics is the only difference. The effect of introduction or elimination of antiseptics alone is not addressed sufficiently in the literature for each of the infection types of interest. The model acknowledges this and is conservative in eliminating a number of infections that are deemed to be not preventable by any means and by assuming, in our high scenario, that no more than 30% of preventable infections could be prevented based on health care antiseptic use. The structure and form of the model are designed with the assumption that there is some effect of health care antiseptic use on the rate of HAIs, consistent with real-world findings,25,26 but it accepts the user’s input about what fraction of HAIs can be prevented rather than endorsing a particular value. It would have been possible to split the prevention component of the model into two separate pieces, one of which would apply values for the potential preventive effect of the antiseptics, and the second of which would allow the user to assume the level of performance to moderate the potential effect. Given the uncertainty in these inputs as well as the fact that they would simply be multiplied, we chose to handle this issue as a single model input. Further, the model only estimates incremental hospital costs for infections that can reasonably be attributed to the use of hand hygiene rather than a more comprehensive set of benefits. Thus, the estimates here are likely to be conservative.
Third, there is uncertainty about the financial impact of HAIs, although a variety of methods and approaches have been used to develop estimates. The health care facilities and sites that were used for the estimates in the model may have had an older/younger or sicker/healthier population than an average hospital. In most cases, the model used an aver-age of available cost estimates, which should minimize the influence of particular factors associated with an individual study or site on the final estimate used. Even if the cost for each type of HAI were known, it is important to recognize the difference between reimbursements, herein referred to as costs, and the actual costs that a hospital requires to treat a patient. Although insurers may not directly bear the costs for HAIs in the future given the trend toward not reimburs-ing hospitals for a growing list of preventable infections, hospitals will still need to provide the additional resources required to treat the infections.
The scope of this model includes only initial hospital costs associated with HAIs in the US. As such, the model inputs that required use of US data included the counts of HAIs and hospital costs. The model integrated data on pre-ventive potential and attributability to antiseptics from any study worldwide, with the assumption that the preventive effect of any agent would be similar regardless of the region in which it was used. There are a number of additional costs relevant to calculating the full impact of removing antiseptic products from the market not captured here. These costs include but are not limited to hospital readmission, short-term rehabilitation, long-term follow-up care, co-pays and out-of-pocket fees, lost wages, caregiver assistance, lost productivity, and transportation. General estimates for these elements are available in the published literature and could be combined with the HAI-specific inputs to this model to produce a more comprehensive evaluation of costs.27,28 As the costs of long-term morbidity and mortality are not cur-rently included in this analysis, the model’s estimates are conservative.
In addition to these sources of uncertainty, there is also a layer of regional variation that should be considered in applying these findings. Various hospitals, regions, and pay-ers may have different input assumptions than those used in this model based on the pathogens present in their facilities. Certain pathogens, resistance patterns, and infection types are more prevalent at some facilities and in particular regions than others, and thus while this model is designed to reflect the US as a whole, results cannot directly be scaled down to reflect a smaller region or population.
Not only are there differences in terms of HAIs and causes across sites but there may also be differences in populations. HAIs may cause disproportionate burden in certain racial and ethnic groups. Findings from an analysis of the Medicare Patient Safety Monitoring System suggest that the rate of HAIs is significantly higher among Asian and Hispanic patients.29 Because there are insufficient data to add patient characteristics to the model, it has not been included; however, the inclination to scale these estimates to subpopulations should be resisted for this reason, also.

It is important to recognize that this analysis does not challenge the idea that some hospital-acquired infections are not preventable. Even in the low scenario (which uses the most conservative estimates), the model assumes that some HAIs cannot be prevented. However, the reported number of HAIs may be influenced by lack of reimbursement. In their efforts to minimize rates of HAIs, hospitals may conduct more screening at admission to understand whether patients are already colonized at admission to determine whether infec-tions should be considered hospital-acquired,8 which could result in a decrease in infections determined to be hospital-acquired. Further, lack of reimbursement for some of these infections may encourage proactive antibiotic treatment and the unintended negative consequence of contributing to develop ment of resistance, making HAIs more expensive to treat. Regardless of these uncertainties, the underlying frame-work of this model assumes that there is some proportion of HAIs that are currently avoided as a result of the use of health care antiseptics, and that limiting availability of these types of products would be associated with an increase in the rate of these types of infections and associated hospital costs.

Conclusion
Although multiple sources of uncertainty exist, this model uses a range of estimates to effectively identify the plausible effect of health care antiseptic use on the number of HAIs and associated hospital costs in the US. Low- and high-end estimates of the number of national, annual HAI cases avoided through use of health care antiseptics are 12,100 and 223,000, respectively, with associated avoided hospital costs of US$142 million and US$4.25 billion, respectively.

 

Author contributions
JKS and CKH took primary responsibility for review of literature, JKS and SS took responsibility for model design and construction, and JAK, PCD, RS, and PAC provided inputs and interpretations. All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure
JK Schmier, CK Hulme-Lowe, S Semenova, and JA Klenk are employees of Exponent, a consulting company that has received a grant from the American Cleaning Institute for this research. PC DeLeo and R Sedlak are employees of the American Cleaning Institute. PA Carlson is an employee of Ecolab. The authors report no other conflicts of interest in this work.

 

References
1. Magill SS, Edwards JR, Bamberg W, et al. Multistate point- prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208.
2. Medicare.gov. Hospital Compare. Readmissions, complications, and deaths. Available from: http://www.medicare.gov/hospitalcompare/about/rcd.html. Accessed June 5, 2015.
3. Ellingson K, Haas JP, Aiello AE, et al. Strategies to prevent healthcare-associated infections through hand hygiene. Infect Control Hosp Epidemiol. 2014;35(8):937–960.
4. Food and Drug Administration. Safety and Effectiveness for Health Care Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; Proposed Amendment of the Tentative Final Monograph; Reopening of Administrative Record. Docket No. FDA-2015-N-0101. Preliminary Regulatory Impact Analysis. Initial Regulatory Flexibility Analysis. Unfunded Mandates Reform Act Analysis. Economics Staff OoP, Office of Policy, Planning, Legislation, and Analysis, Office of the Commissioner, Department of Health and Human Services. 2015. Available from http://www.fda.gov/downloads/AboutFDA/Reports-ManualsForms/Reports/UCM447035.pdf. Accessed February 15, 2016.
5. Salgado CD, Sepkowitz KA, John JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):479–486.
6. Klevens RM, Edwards JR, Richards CL Jr, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160–166.
7. Scott RD 2nd. The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention. Division of Healthcare Quality Promotion; National Center for Preparedness D, and Control of Infectious Diseases; Coordinating Center for Infectious Diseases; Centers for Disease Control and Prevention. 2009. Available from http://www.cdc.gov/HAI/pdfs/hai/Scott_CostPaper.pdf. Accessed February 15, 2016.
8. Brown J, Doloresco Iii F, Mylotte JM. “Never events”: not every hospital-acquired infection is preventable. Clin Infect Dis. 2009; 49(5):743–746.
9. Harbarth S, Sax H, Gastmeier P. The preventable proportion of noso-comial infections: an overview of published reports. J Hosp Infect. 2003;54(4):258–266; quiz 321.
10. Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infec-tions that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol. 2011;32(2):101–114.
11. Gordin FM, Schultz ME, Huber RA, Gill JA. Reduction in nosoco-mial transmission of drug-resistant bacteria after introduction of an alcohol-based handrub. Infect Control Hosp Epidemiol. 2005;26(7): 650–653.
12. Hayden MK, Bonten MJ, Blom DW, Lyle EA, van de Vijver DA, Weinstein RA. Reduction in acquisition of vancomycin-resistant entero-coccus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006;42(11):1552–1560.
13. Lai KK, Fontecchio S, Melvin Z, Baker SP. Impact of alcohol-based, waterless hand antiseptic on the incidence of infection and colonization with methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Infect Control Hosp Epidemiol. 2006;27(10):1018–1024.
14. Harrington G, Watson K, Bailey M, et al. Reduction in hospitalwide incidence of infection or colonization with methicillin-resistant Staphylococcus aureus with use of antimicrobial hand-hygiene gel and statistical process control charts. Infect Control Hosp Epidemiol. 2007;28(7):837–844.
15. Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet. 2000;356(9238):1307–1312.
16. Zoabi M, Keness Y, Titler N, Bisharat N. Compliance of hospital staff with guidelines for the active surveillance of methicillin-resistant Staphylococcus aureus (MRSA) and its impact on rates of nosocomial MRSA bacteremia. Isr Med Assoc J. 2011;13(12):740–744.
17. Zimlichman E, Henderson D, Tamir O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173(22):2039–2046.
18. Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis. 2014;58(5):688–696.
19. Stamm AM, Bettacchi CJ. A comparison of 3 metrics to identify health care-associated infections. Am J Infect Control. 2012;40(8):688–691.
20. Dudeck MA, Weiner LM, Allen-Bridson K, et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control. 2013;41(12):1148–1166.
21. Dwyer LL, Harris-Kojetin LD, Valverde RH, et al. Infections in long-term care populations in the United States. J Am Geriatr Soc. 2013; 61(3):342–349.
22. Larson EL, Cohen B, Baxter KA. Analysis of alcohol-based hand sanitizer delivery systems: efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am J Infect Control. 2012;40(9): 806–809.
23. World Health Organization. WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge. Clean Care Is Safer Care. Geneva, Switzerland: World Health Organization; 2009.
24. Schweizer ML, Reisinger HS, Ohl M, et al. Searching for an optimal hand hygiene bundle: a meta-analysis. Clin Infect Dis. 2014;58(2):248–259.
25. Ben-David D, Masarwa S, Adler A, Mishali H, Carmeli Y, Schwaber MJ. A national intervention to prevent the spread of carbapenem-resistant Enterobacteriaceae in Israeli post-acute care hospitals. Infect Control Hosp Epidemiol. 2014;35(7):802–809.
26. Schweon SJ, Edmonds SL, Kirk J, Rowland DY, Acosta C. Effec-tiveness of a comprehensive hand hygiene program for reduction of infection rates in a long-term care facility. Am J Infect Control. 2013; 41(1):39–44.
27. Davis K, Collins SR, Doty MM, Ho A, Holmgren AL. Health and productivity among U.S. workers. Issue Brief (Commonw Fund); 2005;(856):1–10.
28. Lawrence BA, Bhattacharya S, Zaloshnja E, et al. Medical and Work Loss Cost Estimation Methods for the WISQARS Cost of Injury Module. Calverton, MD: Pacific Institute for Research and Evaluation; 2011.
29. Bakullari A, Metersky ML, Wang Y, et al. Racial and ethnic disparities in healthcare-associated infections in the United States, 2009–2011. Infect Control Hosp Epidemiol. 2014;35(Suppl 3):S10–S16.
30. Anderson DJ, Pyatt DG, Weber DJ, Rutala WA; North Carolina Depart-ment of Public Health HAIAG. Statewide costs of health care-associated infections: estimates for acute care hospitals in North Carolina. Am J Infect Control. 2013;41(9):764–768.
31. Eber MR, Laxminarayan R, Perencevich EN, Malani A. Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia. Arch Intern Med. 2010;170(4):347–353.
32. McGlone SM, Bailey RR, Zimmer SM, et al. The economic burden of Clostridium difficile. Clin Microbiol Infect. 2012;18(3):282–289.
33. Anderson DJ, Kaye KS, Chen LF, et al. Clinical and financial out-comes due to methicillin resistant Staphylococcus aureus surgical site infection: a multi-center matched outcomes study. PLoS One. 2009;4(12):e8305.

Jordana K Schmier1
Carolyn K Hulme-Lowe1
Svetlana Semenova2
Juergen A Klenk3
Paul C DeLeo4
Richard Sedlak5
Pete A Carlson6
1Health Sciences, Exponent, Inc., Alexandria, VA, 2EcoSciences, Exponent, Inc., Maynard, MA, 3Health Sciences, Exponent, Inc., Alexandria, VA, 4Environmental Safety, 5Technical and International Affairs, American Cleaning Institute, Washington, DC, 6Regulatory Affairs, Ecolab, Saint Paul, MN, USA