There's Another Benefit to Hand-Washing During Pandemic

Halogenated flame retardants, such as polybrominated diphenyl ethers, are known to be a health risk to children. Previous research has shown that exposure to these chemicals can cause lower IQ and behavioral problems in children.

“It’s well-known that viruses are transferred between surfaces and hands,” said study co-author Miriam Diamond, a professor in the University of Toronto’s department of earth sciences.

“Our study shows that toxic chemicals like flame retardants do the same. That’s another reason we should all wash our hands often and well,” Diamond said in a university news release.

Study co-author Lisa Melymuk, an assistant professor of environmental chemistry at Masaryk University in the Czech Republic, noted that “if a flame retardant is used in the TVs, we then find it throughout the house, including on the hands of the resident.”

And even though regular hand-washing can reduce your exposure to these chemicals, Arlene Blum, executive director of the Green Science Policy Institute in Berkeley, Calif., suggested that “to reduce health harm from flame retardants, the electronics industry should stop their unnecessary use.”

Blum said, “Fire safety can be achieved by innovative product design and materials instead of the use of toxic chemicals that can remain in our homes — and in us — for years to come.”


More information

The U.S. National Institute of Environmental Health Sciences has more on flame retardants.

SOURCE: University of Toronto, news release, June 9, 2020

 

By Robert Preidt
Published: Last Updated:


Patient safety: too little, but not too late

The first-ever World Patient Safety Day is taking place on Sept 17, 2019. Every day, countless patients worldwide are put at risk by unsafe care and end up requiring treatment for ailments caused by the very system that was supposed to help them get better. Protecting patients from errors, injuries, accidents, and infections is an essential goal for every health system, but no health system has so far successfully addressed patient safety.

Some of the statistics proffered by WHO to high-light patient safety are striking. In low-income and middle-income countries (LMICs), 134 million adverse events per year are directly attributable to unsafe care. These adverse events—including misdiagnosis, hospital-acquired infections, and medical errors—lead to 2·6 million unnecessary deaths. Worldwide, the risk of patient death because of a preventable medical accident is one in 300. One in ten patients suffer injury while receiving health care, and 15% of all hospital expenses are incurred as a result of treating failures in patient safety.

Patient safety hinges on quality of care. The Lancet Global Health’s 2018 Commission highlighted the need for “high-quality health systems that optimise health care in each context by consistently delivering care that improves or maintains health”. It feels obvious to state that a health-care system should aim to improve the health of those accessing it. Similarly, all health professionals expect that patients will have their condition improved by health care. However, the data compiled by WHO should be a wake-up call as they would be in any other industry. So what can be done?

First, do no harm. The safety of patients must be the paramount concern of professionals and the systems they work in. Rather than a platitude, this ask is an exhortation to strengthen systems, build better infrastructure, and value strong leadership. Reporting in US hospitals shows some health-care-associated infections can be reduced by as much as 70% with proper patient safety interventions that include stan-dardised clinician education, proper notification processes, and strict hand hygiene procedures. However, the WHO hand hygiene guidelines sug-gest compliance with proper hygiene can be as low s 40%. Hence, a greater effort needs to be made in monitoring and ensuring that basic practices of patient safety are strong and robust across all institutions, no matter how obvious the need for such procedures.

Second, health professionals must recognise that patient safety is a two-way partnership. Patients must be involved—indeed be central—in their own care. The myriad ways inadvertent harm can be done to patients indicate that everyone, from policy maker and health advocate to caregiver and health worker, holds a vital stake in patient safety. Indeed, evidence suggests that involving patients, service users, and carers in important decisions relating to care and treatment strengthens patient safety and is the best way for patients to achieve a positive outcome. As WHO comments, “safe health care starts with good communication”.

Finally, awareness of the burden that patient safety requirements place on LMICs is needed: addressing all improvements necessary for increased patient safety require resources. Two-thirds of all adverse events resulting from unsafe care occur in LMICs. Health professionals in high-income countries must ask themselves what they can do, not just to promote patient safety in their own system but also to offer outreach, support, resources, and expertise to LMICs bearing the burden of raised patient safety standards, rapidly changing disease patterns, and expectations of achieving the same development goals.

Recognising the importance of patient safety world wide is something that strikes right at the philosophical heart of health care. A Comment in this issue highlights how patient safety is now a core part of the move towards universal health coverage and states, importantly, that “addressing systemic, organisational, cultural and behavioural drivers of patient harm remains extremely challenging and a lot of known problems remain unsolved”. World Patient Safety Day is a prompt to everyone involved in care to examine their role in contributing to these drivers. In the treatment of immediate illness, health-care systems must offer best practice and consistent treatment for all patients, and at all levels, to ensure further damage is prevented.

The Lancet
www.thelancet.com Vol 394 September 14, 2019


Effect of gloved hand disinfection on hand hygiene before infection- prone procedures on a stem cell ward

From February 2017 to April 2018, a tri-phase study was performed with the intervention ‘gloved hand disinfection’ at the stem cell unit of the University Medical Center, Goettingen, a tertiary care centre.

The stem cell ward comprises 16 beds in 10 patient rooms. The staff consisted of eight physicians and 18 female/male nurses, of whom five physicians and nine nurses were present each day. The ward had already been sufficiently equipped with alcohol-based hand rub (ABHR) dispensers; only alcoholic disinfectants were used.

During phase I (February to August 2017) baseline observation was performed to determine baseline hand hygiene compliance. During phase II (September 2017 to January 2018) gloved hand disinfection was strongly advised for predefined situations, but not enforced. Because gloved hand disinfection makes work easier, HCWs were keen to try this tool. If the HCW preferred regloving with proper hand rub instead of disinfecting gloves, the infection control professional (ICP) documented correct behaviour. During phase III (February to May 2018) gloved hand disinfection was restricted to discriminate intervention effects from time trends and learning effects. The gloved hand disinfection was restricted to workflows including at least one infection-prone procedure only within one patient. Examples were (not restricted to):

– preparing and handling with intravenous medication and/or blood products;

– manipulations at central or peripheral lines including blood sampling procedure.

The primary endpoint, on which the power analysis was based, was full hand hygiene compliance determined by direct observation (reference standard) according to the WHO protocol [18]. Hand hygiene compliance was defined by the number of performed hand rubs divided by the number of observed hand hygiene opportunities. Observation was performed by three ICPs. Inter-observer agreement was ≥90% after a six-week training period. The secondary endpoints were: (i) WHO indication-specific hand hygiene compliance, notably compliance ‘before aseptic tasks’, defined by the number of hand rubs performed divided by the number of observed indications for specific opportunities [18, 19]; (ii) incidence density of severe infection (defined by healthcare-associated primary bloodstream infection (HABSI; no. per 1000 patient days (PD)) and healthcare-associated pneumonia (HAP; no. per 1000 patient-days);(iii) incidence density (occurrence) of healthcare-acquired multidrug-resistant (micro-)organism (HA MDRO; no. per 1000 patient-days).

Severe infections (HABSI and HAP) were determined according national reference protocol designed for allogeneic stem cell transplant patients and adjusted at 1000 patient-days [20]. This protocol addressed patients undergoing allogeneic stem cell transplants and evaluated sepsis and pneumonia. HA MDROs were defined as meticillin-resistant Staphylococcus aureus (MRSA), extended spectrum β-lactamase (ESBL) r carbapenemase-producing Enterobacteriaceae and vancomycin-resistant enterococci. HA MDROs were defined according to the US Centers for Disease Control and Prevention guidelines for MDRO management [21, 22]. Specimens from outpatients and inpatients of less than four days were excluded. Patient specimens included samples taken routinely for screening and for investigation of possible infection. All data, obtained from the laboratory information system, were analysed and assessed daily by ICPs. Length of stay (patient-days) was determined using the patient management system. Hand hygiene observations were made during day shifts; one observation period lasted 30–90 min and a range of five to 25 opportunities was observed in each. An additional secondary endpoint, HCWs acceptance of gloved hand disinfection, was assessed using a standardized questionnaire, using an ordinal scale, applied to 10 selected HCWs (Appendix A, including Supplementary Figure S1).

The investigation was approved by the local ethics committee (Reference No. COMTRA-12/12/16).

For the study, nitrile-polymer gloves were used [17]. These were Purple-nitrile-xtra® (Halyard Health, Inc., Alpharetta, GA, USA; manufacturer’s specifications: ISO 374-1/5 2016 Type C, ISO 10993-1/2/5/10/12; EN 16523-1, EN 455, 420, 374-2/4) and Nitrile LG PF® (Maimed GmbH, Neuenkirchen, Germany; manufacturer’s specifications: EN420, 374, 455, ASTM 6319, CAT III) [17]. Hand rubs were performed using standard hand rub solutions used at each hospital: Desderman pure® (Schülke & Mayr GmbH, Nordstedt, Germany; pharmaceutical ingredients 78.2 g ethanol 96%, 0.1 g biphenyl-2-ol, povidone 30, isopropylmyristate, 2-ethylhexanoate, sorbitol, 2-propanol, purified water) and Softa-Man® (B. Braun Melsungen AG, Melsungen, Germany; pharmaceutical ingredients: 45% ethanol, 18% 1-propanol, purified water, diisopropyladipate, macrogol-6-glycerolcaprylocaprate, dexpathenol, bisabolol, lemon- and linalool-flavour, allantoin).

Gloved hand disinfection may have risks (e.g. skin damage, transmission of microbes), if HCWs perform gloving inappropriately, e.g. changing between patients with gloved hands, wearing gloves for too long, and inappropriate glove–ABHR combinations. However, disinfectability and stability of medical examination gloves has been recently demonstrated in vitro [17, 23]. Moreover, gloved hand disinfection is in line with the national guidelines and recommendations of the Clean Hands campaign (ASH) which was founded initially by the German Coalition for Patient Safety (APS) and the German National Reference Center for Surveillance of Nosocomial Infections (NRZ Surveillance).

To minimize the remaining risks, we defined the following rules before starting the study:

– All HCWs were informed individually and in detail about the design, timeline and aim of the study, and were given appropriate training on gloved hand disinfection.

– HCWs were warned about the risk of premature loss of integrity of gloves and were asked to report any event of suspicious alteration, e.g. stickiness, fragility, sacculation, or colour change of gloves when disinfected. Pretesting of several glove and ABHR combinations was used to determine the best combinations for the study.

– The number of consecutive gloved hand disinfections was restricted to a maximum of five.
The duration of glove usage was shortened to 20 min (in contrast to the ASH statement).

– Gloves had to be changed immediately whenever dirty or damaged.

– The same gloves could only be worn for contact with an individual patient.

– The study was supported by the occupational health service.

– The trial was overseen by ICPs, who were empowered to interrupt the study if any rules were broken.

Statistical analysis

Power calculation and expected increase in hand hygiene compliance of 40% were applied according to previous intervention strategies supposing 80% power with a given two-sided α error level of 5% [14, 24]. Computation of odds ratio (OR); 95% confidence interval (CI); P-values and χ2-statistics were performed using PSPP® 1.0.1 (GNU General Public License version 2), R 3.5.1 (GNU General Public License version 2) with Yates’ correction and Medcalc® 18.6 (MedCalc Software bvba) [25, 26, 27, 28, 29, 30]. To avoid errors by zero values of the odds ratios, values were slightly modified by adding 0.5 to all contingency cells [31, 32]. Statistics were supported by the Department of Medical Statistics.

Our hypothesis of an improvement in hand hygiene compliance by ntroducing gloved hand disinfection was confirmed, with a significant increase from 31% (baseline) to 65% (post-interventional) before infection-prone procedures. This is especially impressive because we offered no training on general infection control or hand hygiene either before or during the study. Thus, gloved hand disinfection may be an effective single strategy for improving hand hygiene compliance before infection-prone procedures.

According to WHO’s requirements a hand rub must be performed before gloving and after removing gloves, e.g. when moving from dirty to clean tasks or when aseptic activities are interrupted and continued afterwards. This scenario is complex, time-consuming, and in a real-life setting not always realized [23, 33].
Achieved compliance of 31% (indication 2; phase 1) in our study seems to be low compared to hand hygiene compliance with other indications, e.g. 81% (indication 4), 56% (indication 3). Compared to other studies aiming at hand hygiene compliance, the improvement in our study represents a major improvement without increasing the workforce or costs. This is of great importance, since the most often self-reported and currently proven reason for HCWs’ non-compliance is lack of time and a forced workload, and this is in line with previous results for another strategy, namely process optimization [12, 13, 14, 15, 16]. Indication 2 is regarded as the most important for patients, is associated with the lowest compliance rates in most studies, and is least improved by most hand hygiene improvement strategies. Thus, gloved hand disinfection could help to improve patient safety in a resource-neutral, easy implementable way.

During the study the incidence density of severe infections decreased
(6.0 per 1000 vs 2.5 per 1000 patient-days) by trend. This is in line with the improvement for hand hygiene especially before infection-prone procedures. However, this is no definite proof of reduction of infections.

Notably, power calculation did not primarily address this secondary endpoint. Investigation of severe infections during gloved hand disinfection in a roll-out setting is warranted.

Hand hygiene compliance with indications 3 and 4 (after contact with body fluid or patient) were not expected to improve by gloved hand disinfection in this setting. This hypothesis was proven by our study, since hand hygiene compliance improvement in this case was not driven by the intervention itself. Interestingly, our study showed an increase in hand hygiene compliance after contact with patients’ surroundings. HA MDRO remained constant during all study phases independently from outpatients’ incidence. Thus, we infer that gloved hand disinfection did not represent a patient risk when safety rules were followed. On the contrary, gloved hand disinfection improved hygiene in those situations most relevant for patients.

Different strategies may influence hand hygiene compliance. System-related (e.g. ABHR dispenser availability and localization, implementation of standardized procedures, process simplification and optimizing or automated monitoring) and individual patient-related (individual training, feedback audits) strategies differ in implementation workforce and probability of sustained effectiveness [2, 15, 34, 35, 36, 37, 38]. Thus, as a system-related strategy, disinfection of gloves is probably a sustainable component of a multi-faceted infection control strategy.

Support by the staff is a basic requirement of implementation. HCWs rated the release of the gloved hand disinfection as an improvement or alleviation of personal working conditions. In fact, gloved hand disinfection was not perceived as a burden, but as a tool that made work easier.

There were limitations to this study. It was a single-centre study only on one stem cell ward. The data shown cannot easily be extrapolated to other settings. However, the study was initiated as a proof-of-principle study. At baseline, hand hygiene compliance was only at a moderate level, thus the effect could be overestimated with regard to settings starting at higher baseline levels. The study was designed to correct potential time and training effects from the ‘glove effect’. However, the significant ‘glove effect’ shown in phase 2 is no definite proof. The direct observation was intended to be performed in a completely anonymous manner without HCW anonymization. ICPs were asked to rotate HCW sequence when observing. Thus, observation bias cannot be excluded completely. Although direct observation is widely accepted as a reference standard to calculate hand hygiene compliance, there is no method to ensure compliance with gloved hand disinfection beyond the observation period.
Every entity of infection belongs to different transmission events and those that are related to hand hygiene compliance according to the WHO indications have not been investigated in detail. However, according to the national surveillance programmes we used the combined infection parameter as secondary endpoint. It may be useful to distinguish different entities in further studies to compare their responses to the hand hygiene compliance.

In conclusion, this study is the first to investigate gloved hand disinfection in real-work scenarios, demonstrating an improvement in hand hygiene compliance. Hand hygiene compliance was even improved before infection-prone pro-cedures, the situations with the highest impact on infections, and thus infection control. Notably, severe infections decreased by trend.
Taken together, gloved hand disinfection could be an easy implementable, resource-neutral tool as a new component within the infection control bundles. Settings with a high number of aseptic procedures and unsatisfactory baseline levels would benefit most, especially in times of HCW shortage.

Read the full article:  https://www.journalofhospitalinfection.com/article/S0195-6701(19)30258-0/fulltext?dgcid=raven_jbs_etoc_email

© 2019    P. Fehlinga,∗,’Correspondence information about the author P. FehlingEmail the author P. Fehling, J. Hasenkampb, S. Unkelc, I. Thalmanna, S. Horniga, L. Trümperb, S. Scheithauera


Epidemiology and impact of norovirus outbreaks in Norwegian healthcare institutions, 2005–2018

Outbreaks in healthcare settings affect vulnerable populations, disrupt normal routines and may spread to other healthcare institutions (HCIs). Outbreaks can be limited in extent by good routines for detection, management of cases and other infection-control measures [1]. Norovirus infection is most often seen in the winter months and is a common cause of outbreaks in HCIs [2] as it has a low infectious dose, short incubation period, and symptoms such as diarrhoea and vomiting which facilitate spread. Symptoms normally lasts around one to three days, but can be longer in hospital patients [3]; and in this type of setting, infection can lead to slower recovery from other illness and even death [4]. Norovirus can be divided into several genogroups and genotypes [5]. Genogroup II genotype 4 is the most prevalent genotype globally [6] as well as in the Nordic countries [6]. There is no vaccine and immunity is not well understood; at best it is strain-specific but probably only partial and shortlived as the virus readily undergoes mutation [7, 8]. Humans are the only reservoir of the virus and spread of the infection in outbreaks is particularly difficult to control because of the low infectious dose, its stability in the environment and efficient transmission by person-to-person contact and exposure through contaminated surfaces [9]. Norway has national recommendations on norovirus infection in long-term-care facilities (LTCFs) in which the most important measure is isolation or cohort nursing of sick residents. Exclusion of sick staff until 48 h after they are symptom free is also recommended [10]. In a hospital setting, the infection-prevention-control unit will have local procedures. There are around 60 hospitals and 950 LTCFs in Norway [11]. The responsibility for management of local outbreaks lies within the hospital or with the community medical officer (one in each of the 422 municipalities) for outbreaks in LTCFs. All suspected outbreaks in Norwegian HCIs, regardless of the causative pathogen, should be alerted by law to relevant actors, including the Norwegian Insititute of Public Health (NIPH), to facilitate communication and response [12, 13]. The aim of this study was to describe, for the first time, the epidemiology and impact of these outbreaks in order to identify areas which may improve outbreak response.

This study shows that norovirus outbreaks pose an important burden for HCIs all over Norway, especially in the winter months. In addition to affecting an already vulnerable population, this study shows that these outbreaks indeed also impact on the internal workflow and resources, with a conservative estimate of around 1800 days of absenteeism per year due to these outbreaks, during which staff would have to be covered for by other internal or external healthcare staff.

Surveillance of norovirus outbreaks exists in Germany and Scotland. In Germany, reporting of norovirus outbreaks in HCIs has been mandatory since 2001. In contrast to what is seen in Norway, outbreaks were smaller (median nine cases vs 15 in this study) and around 80% of norovirus outbreaks were reported from hospitals (vs 23% in this study) during the first 12 months after introduction of the system [15]. Varying ways of counting interdepartmental outbreaks, better collaboration with the local level or under-reporting from hospitals may explain this. In Scotland, surveillance of ward closures due to norovirus infection has been in place since October 2017. From then until week 26, 2018, 219 wards or bays have been closed due to confirmed or suspected norovirus [16]. This is markedly more than the 16 reported outbreaks in hospitals in Norway 2017/18, in a population of similar size. The occurrence of norovirus outbreaks has also been studied prospectively; Curran et al. [17] aimed to identify the index cases of norovirus outbreaks in the UK and Ireland in 54 acute and non-acute healthcare centres; only five out of the 54 included centres did not experience any outbreak during one winter. Also, Lopman et al. found that 171 inpatients units, had on average 1.3 gastroenteritis outbreaks in the 1-year follow-up period. Of these, 63%were caused by norovirus [2].

It was seen that a small proportion of residents at LTCFs were admitted to hospital during norovirus outbreaks. This may be necessary in severe cases despite the risk of spread from one institution to the next. Our results suggest that hospitals are affected by norovirus outbreaks earlier in the epidemiological year than LTCFs. Potentially because there is a greater influx of patients from the community, where norovirus circulates, to and from hospital than between the community and LTCFs as also suggested by Sadique et al. [18]. This finding, however, could only be evaluated on the national level, as the number of reported outbreaks is low. That the start of the outbreak season seemed to start earlier in hospitals than in LTCFs, at least at the national level, suggests an opportunity that with improved communication, hospitals could alert LTCFs within the same area in order to prepare for the outbreak season and limit the extent of further outbreaks.

Slightly more cases were seen amongst healthcare staff in hospitals compared to LTCFs, though no information about the number of healthcare staff at risk during the outbreaks is available. The patient or resident:healthcare-staff ratio varies with the level of care needed and type of department and will most often be higher in hospitals. Whether this explains the slightly higher proportion of staff affected in hospital outbreaks is unknown. Nevertheless, healthcare staff do represent a big proportion of cases in the reported outbreaks, indicating a need for improved compliance with infection prevention and control measures. Outbreaks are an economic burden for HCIs, both as infected staff need to be covered for during illness and ‘quarantine’ and cohort nursing may require extra staff.

The relatively high number of people infected during an outbreak underscores the infectiousness of norovirus and norovirus can serve as a worst-case scenario for introduction of other, more virulent, person-to-person transmitted pathogens into HCIs. With the current information captured in the alert system, it was not possible to assess the extent to which national recommendations were followed and/or which infection prevention control procedures are in place locally. But the high number of people infected do suggest a potential for limiting spread, for example by having systems and routines in place before outbreaks happen, as advised in the national recommendations.

Even though NIPH routinely promotes the web-based outbreak alert system and teaches outbreak management, both at the regional and national level, in order to strengthen local capacity and encourage the use of the alert system, under-reporting is still apparent. If the under-reporting of outbreaks reflects a lack of awareness concerning outbreak management, or a lack of communication between the LTCF and the municipal doctors about ongoing outbreaks, it is worrying. The alert system serves to alert relevant stakeholders so that outbreak support and advice can be given in an early phase. The alert system can also be used for statistical purposes to get a national overview of outbreaks which will facilitate targeted capacity building, guideline development and communication messages in order to increase awareness and investigate whether there are any changes in trends.

Limitations
This study has three main limitations: the sensitivity of the norovirus outbreak definition and under-reporting of number of outbreaks and number of cases in each outbreak. Classification as a norovirus outbreak is dependent on local definitions. The infection prevention measures for diarrhoea and vomiting are the same for all the common pathogens in this setting. Samples were submitted for testing in two thirds of the outbreaks and most were confirmed as norovirus at the time of reporting or updating. Information about the genotypes of the isolated strains from each outbreak or of dominant strain of the season was not available. For this reason, it was not possible to evaluate the effect of the genotype.

Concerning under-reporting, the number of outbreaks notified through the outbreak alert system and reported here, most likely represent only a proportion of all norovirus outbreaks occurring in Norwegian HCIs. Although outbreaks were reported from all parts of Norway, some areas had not reported any outbreaks of any kind during the 13-year study-period.

The alert system is used for the mandatory alerting of suspected outbreaks. Reporting should happen as soon as the outbreak is suspected and before the full extent of the outbreak is known. Even though the system sends a reminder to update the details about the outbreak, including the case numbers, three weeks after the initial alert, some under-reporting of the extent of each outbreak is expected.

This is the first comprehensive description of norovirus outbreaks in HCIs in Norway. Even though the analyses revealed under-reporting that is unlikely to reflect the real epidemiology, this study clearly shows that these outbreaks affect both hospital and LTCFs all over Norway. Norovirus infection may delay medically important procedures and recovery, but also presents a major challenge to the functional ability of an HCI and its resources as up to one-half of cases were healthcare personnel.

It is recommended that NIPH promotes the outbreak alert system to increase reporting and improve the quality of the data and strengthen local capacity for outbreak management and general infection control. It is also recommended to investigate possibilities for improving communication between hospitals and LTCFs regarding when the norovirus season starts and progresses, for hospitals and LTCFs to be prepared and to take early action to prevent and limit further spread.

Read full article: https://www.journalofhospitalinfection.com/article/S0195-6701(19)30268-3/fulltext?dgcid=raven_jbs_etoc_email

© 2019 The Authors. Published by Elsevier Ltd on behalf of The Healthcare Infection Society.


Historical perspective on hand hygiene in health care

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge Clean Care Is Safer Care. Geneva: World Health Organization; 2009.

Handwashing with soap and water has been considered a measure of personal hygiene for centuries48,49 and has been generally embedded in religious and cultural habits (see Part I, Section 17). Nevertheless, the link between handwashing and the spread of disease was established only two centuries ago, although this can be considered as relatively early with respect to the discoveries of Pasteur and Lister that occurred decades later.

In the mid-1800s, studies by Ignaz Semmelweis in Vienna, Austria, and Oliver Wendell Holmes in Boston, USA, established that hospital-acquired diseases were transmitted via the hands of HCWs. In 1847, Semmelweiss was appointed as a house officer in one of the two obstetric clinics at the University of Vienna Allgemeine Krankenhaus (General Hospital). He observed that maternal mortality rates, mostly attributable to puerperal fever, were substantially higher in one clinic compared with the other (16% versus 7%).50 He also noted that doctors and medical students often went directly to the delivery suite after performing autopsies and had a disagreeable odour on their hands despite handwashing with soap and water before entering the clinic. He hypothesized therefore that “cadaverous particles” were transmitted via the hands of doctors and students from the autopsy room to the delivery theatre and caused the puerperal fever. As a consequence, Semmelweis recommended that hands be scrubbed in a chlorinated lime solution before every patient contact and particularly after leaving the autopsy room. Following the implementation of this measure, the mortality rate fell dramatically to 3% in the clinic most affected and remained low thereafter.

Apart from providing the first evidence that cleansing heavily contaminated hands with an antiseptic agent can reduce nosocomial transmission of germs more effectively than handwashing with plain soap and water, this approach includes all the essential elements for a successful infection control intervention: “recognize-explain-act”.51 Unfortunately, both Holmes and Semmelweis failed to observe a sustained change in their colleagues’ behaviour. In particular, Semmelweis experienced great difficulties in convincing his colleagues and administrators of the benefits of this procedure. In the light of the principles of social marketing today, his major error was that he imposed a system change (the use of the chlorinated lime solution) without consulting the opinion of his collaborators. Despite these drawbacks, many lessons have been learnt from the Semmelweis intervention; the “recognize-explain-act” approach has driven many investigators and practitioners since then and has also been replicated in different fields and settings. Semmelweis is considered not only the father of hand hygiene, but his intervention is also a model of epidemiologically driven strategies to prevent A prospective controlled trial conducted in a hospital nursery and many other investigations conducted over the past 40 years have confirmed the important role that contaminated HCWs’ hands play in the transmission of health care-associated pathogens (see Part I, Sections 7–9).

The 1980s represented a landmark in the evolution of concepts of hand hygiene in health care.infection. The first national hand hygiene guidelines were published in the 1980s,53–55 followed by several others in more recent years in different countries. In 1995 and 1996, the CDC/Healthcare Infection Control Practices Advisory Committee (HICPAC) in the USA recommended that either antimicrobial soap or a waterless antiseptic agent be used56,57 the rooms of patients with multidrug-resistant pathogens. More recently, the HICPAC guidelines issued in 200258 defined alcohol-based handrubbing, where available, as the standard of care for situations only. The present guidelines are based on this previous document and represent the most extensive review of the evidence related to hand hygiene in the literature. They aim to expand the scope of recommendations to a global perspective, foster discussion and expert consultation on controversial issues related to hand hygiene in health care, and to propose a practical approach for successful implementation (see also Part VI).

As far as the implementation of recommendations on hand hygiene improvement is concerned, very significant progress has been achieved since the introduction and validation of the concept that promotional strategies must be multimodal to achieve any degree of success. In 2000, Pittet et al. reported the experience of the Geneva’s University Hospitals with the implementation of a strategy based on several essential components and not only the introduction of an alcohol-based handrub. The study showed remarkable results in terms of an improvement in hand hygiene compliance improvement and HCAI reduction.60 Taking inspiration from this innovative approach, the results of which were also demonstrated to be long-lasting,61 many other studies including further original aspects have enriched the scientific literature (see Table I.22.1). Given its very solid evidence base, this model has been adopted by the First Global Patient Safety Challenge to develop the WHO Hand Hygiene Improvement Strategy aimed at translating into practice the recommendations included in the present guidelines. In this final version of the guidelines, evidence generated from the pilot testing of the strategy during 2007–2008 is included (see also Part I, Section 21.5).62

Copyright © 2009, World Health Organization.
All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: bookorders@who.int). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: permissions@who.int).
Bookshelf ID: NBK144018
hand hygiene practices in health-care settings, whereas handwashing is reserved for particular


Hand hygiene helps reduce HCAIs (healthcare-associated infection)

Chris Wakefield, Vice President at GOJO Industries-Europe Ltd, highlights how hand hygiene systems reduce the spread of healthcare-associated infection (HCAI)

It is estimated that 300,000 patients a year in England acquire a healthcare associated infection (HCAI) as a result of care within the NHS. Such infections draw large attention from patients, regulatory bodies and the media. Not only because of the magnitude of the problem – after all, they are associated with morbidity, mortality and the financial cost of treatment – but, also, because most are preventable.

Despite being avoidable, HCAIs continue to present a major threat to our public health. They are particularly difficult to eliminate due to the speed and ease that they can be transmitted – and because of their long-life span. Did you know, for example, that MRSA can live up to nine weeks, whilst C.Diff spores can live up to five months? Or that they can be spread through both direct and indirect contact?

Studies have shown that contaminated hands can sequentially transfer some viruses to up to seven surfaces, and that fourteen people can be contaminated by touching the same object one after the other. Perhaps itʼs not surprising then, that research indicates that you have a 50/50 chance of picking up a dangerous pathogen anytime you touch anything or anyone in a hospital.

Such outbreaks can have serious repercussions; including the increased risk to the lives of vulnerable patients, disruption of services and reduced clinical activity, such as the enforced closure of hospital wards, cancelled admissions and delayed discharges. There is also the cost of treatment to factor.
Indeed, a report by the National Audit Office estimated that a reduction in the rates of MRSA bloodstream infections saved the NHS in England between £45 million-£59 million in treatment costs between 2003/4 and 2008/9. It also identified that by reducing the rate of C. difficile infections, between £97 million-£204 million was saved in treatment costs between 2006/7 and 2007/8.

Going back to basics

A great deal of scientific research has shown that, if properly implemented, hand hygiene is the single most important, easiest and cost-effective means of reducing the prevalence of HCAIs and the spread of antimicrobial resistance. In fact, research shows it can cut the number of HCAI cases by up to 50%. Several other studies have also demonstrated that handwashing virtually eradicates the carriage of MRSA which invariably occurs on the hands of healthcare professionals working in intensive care units. An increase in handwashing adherence has also been found to be accompanied by a fall in MRSA rates.
In order to reduce the spread of illness, everyone has to engage with hand hygiene practices – not only healthcare workers, who already make this a part of their daily lives, but visitors and patients too. As a founder member of the World Health Organization (WHO) Private Organizations for Patient Safety group, GOJO is a strong advocate of the ‘total solutionʼ approach to making hand hygiene second nature to everyone in a healthcare setting. We believe that, to successfully change behaviour, a triple-pronged approach is required.

Firstly, handwashing facilities must be accessible and dispensers easy to use. The WHO recommends that an adequate number of appropriately positioned hand hygiene facilities should be readily available at the point of care.

Secondly, the high frequency with which healthcare workers clean their hands means that the formulations must be gentle yet effective against germs, complying with key hospital norms EN 1500, EN 14476 and EN 12791. Studies have also shown that using an alcohol-based handsanitising rub can improve hand hygiene practice, since it is quicker, is microbiologically more effective and is less irritating to skin than traditional hand washing with soap and water.
Finally, eye-catching signage is very effective as a prompt, especially at key germ hot-spots such as washrooms and waiting areas. Hand hygiene facilities must remain well-stocked and maintained at all times too.

Getting smart

Although evidence supports a ‘back to basicsʼ approach, digital innovation also has a role to play. GOJO has spent many years developing advanced formulations and high-tech dispensers, and has recently harnessed revolutionary smart technology to create its SMARTLINK™ Electronic Monitoring Solutions. These two mobile apps are a smarter way to help reduce the maintenance time spent on dispensers, and measure hand hygiene performance – ultimately helping to prevent the spread of germs.
Combining the latest technology with the simple act of hand hygiene, and working together to put effective systems in place, we can reduce the spread of HCAIs. GOJO, the leading global producer of skin health and hygiene solutions for away-from-home settings, is your specialist partner in healthcare hygiene.

For a tailored, effective, total solution for your setting, or for more information, please call +44 (0)1908 588444,
email infouk@GOJO.com or visit www.GOJO.com

 

By Kerrie Doughty
Trade Marketing & Communications Manager GOJO Industries-Europe
Tel: +44 (0)1908588457
infouk@gojo.com
www.GOJO.com
www.twitter.com/GOJO_Hcare
www.twitter.com/GOJO_Europe

 

 

References
1. https://www.nice.org.uk/guidance/qs61/chapter/introduction
2. Hata B et al. Clin Infect Dis 2004; 39k1182 | Kramer A et al. BMC Infect Dis 2006; 6k130 | Havill NL. et al. Infect Control Hosp Epidemiol 2014; 35k445 | Weber DJ et al. Infect Control Hosp Epidermiol 2015.
3. Barker J, Vipond IB, Bloomfield SF. J Hosp Infect 2004,58k42-494 Stiefel U et al. Infect Control Hosp Edipdemiol 2011; 32k185.
4. 2008 SDA Clean Hands Report Card® sponsored by the Soap and Detergent Association.
5. 24 &25 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1
6. 26 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1
7. 2,3 & 35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249958/#ref1


Ebola is back – can it be contained?

The current outbreak of the deadly virus in the DRC has been called the most complex public health emergency in history. Peter Beaumont describes his recent visit to the DRC and Sarah Boseley discusses how the 2014 outbreak was eventually contained. Plus: Helen Pidd on what has been achieved with the ‘northern powerhouse’

CLICK ON IMAGE to go to podcast

The latest outbreak of Ebola, with more than 2,200 cases and more than 1,500 confirmed deaths in just over a year, is the second largest in history, despite the recent availability of an effective experimental vaccine. Political, security and cultural complications – not least a refusal to believe that Ebola exists – have thwarted efforts to overcome the Democratic Republic of the Congo’s deadly outbreak.

Senior global development reporter Peter Beaumont tells Anushka Asthana about his recent trip to North Kivu, which is at the heart of the recent outbreak. He discusses why some health officials are calling it the most complicated public health emergency in history. Guardian health editor Sarah Boseley, who reported on the 2014 outbreak, looks at how that was contained – and why the situation is potentially far more frightening this time round.

And: the Guardian’s northern editor, Helen Pidd, looks at whether the “northern powerhouse” has been a success five years after its creation.

______________________________________________________________________

Publihed by the Guardian,

Presented by Anushka Asthana with Sarah Boseley, Peter Beaumont and Helen Pidd, produced by Nicola Kelly, Elizabeth Cassin, Iain Chambers and Axel Kacoutié; executive producers Nicole Jackson and Phil Maynard


Stay healthy at the hospital

Protect yourself to ensure a speedy recovery and avoid infections and readmission.

Whether you go in for surgery, testing, or an outpatient procedure, your hospital stay can pose further health risks if you are not careful.

“Your potential risks depend in part on why you have to go into the hospital and the facility itself, but there are steps you can take to minimize your risk, especially when it comes to developing hospital-acquired infections that can lead to a longer hospital stay or readmission,” says Dr. Erica Shenoy, an infectious diseases specialist and associate chief of infection control at Harvard-affiliated Massachusetts General Hospital.

Here are some steps to take to ensure a safe hospital visit before, during, and after your stay.

BEFORE

Ask questions.

It can be nerve-racking to ask questions, no matter how small they feel, but you need to muster up the courage and make the most of your interactions with medical staff and during consultation, says Dr. Shenoy. “Just like you, they want you to have a quick and uncomplicated recovery and are open to your inquiries — but you have to ask.”

What should you ask?
H
ere are some questions that can help you manage your own expectations and plan ahead for recovery:

How long will I be in the hospital?

What is the expected recovery time?

Am I likely to need rehab or at-home support? Do I have a choice between the two?

“If at all possible, bring your list of questions and a family member or friend with you during any question–and-answer session,” says Dr. Shenoy. “This will help you feel more confident, and your companion can take notes.”

Get screened for possible infections. Depending on your procedure, you could be at high risk of postoperative infections. For people undergoing knee or hip replacement, common bacteria they may have on their skin can increase the risk.

“About 30% of people carry the bacteria Staphylococcus aureus — or staph — on their skin, without it causing any problems or actual infection,” says Dr. Shenoy. “But this bacterium is implicated in many postoperative infections, which is why your doctor may ask you to get screened for staph colonization, which often involves using a cotton swab on the inside of your nose.”

If you do have staph on your skin, the doctor may prescribe several days of a special bath soap and nose ointment, which together have been shown to decrease — but not eliminate — the risk of developing this type of infection.

Review your medications.

Talk with your doctor about your medications— prescription and over-the-counter — to determine what you should stop taking before your procedure or whether you should change any dosages. “Some drugs, such as blood thinners, may require modifications,” says Dr. Shenoy. Your doctor may provide you with a pre-op checklist so you know what to take and what not to take.

Know the risks.

You may not be aware of all the potential risks. “Even the simplest of procedures has some risks, so it’s important to know what they are even if the odds are quite low,” says Dr. Shenoy. “Knowing the risks can help you make a more informed decision about whether or not to proceed, and also what signs of complications to look for during the recovery period.”

DURING

Practice good hygiene. Doorknobs, handrails, countertops — anything you can touch has the potential to harbor bacteria. Always wash your hands with water and soap before eating and after using the bathroom. Alcohol-based sanitizers are useful outside of those specific circumstances.

All doctors and nurses should wash their hands or use alcohol-base hand sanitizer before they examine you. If not, ask about it. “Many will perform hand hygiene in your presence, but don’t be afraid to ask if they’ve done so before they interact with you,” says Dr. Shenoy.

If your provider expects to encounter blood or body fluids when examining you, he or she may add other protective gear such as gloves and a gown. A clinician may also wear protective equipment if you have a history of harboring particular bacteria.

Know your contacts. Before you leave, get a list of contact information for anyone you need to call regarding your recovery. You’ll also need the dates, times, and locations of all follow-up appointments.

AFTER
Look for warning signs.

When you return home, watch for red flags for when you should seek immediate care — for example, changes in pain, redness or swelling, or fever. “That’s where the list of contacts come in handy,” says Dr. Shenoy. “Reach out to your physicians if you experience symptoms that cause you concern. They can help determine the best next steps.”

Published: June, 2017

https://www.health.harvard.edu/healthcare/stay-healthy-at-the-hospital


Antibiotic resistance to 'kill 90,000' in Britain over the next 30 years

More than 90,000 people will die due to antibiotic resistance in the UK over the next 30 years, estimates suggest.

The Organisation for Economic Co-operation and Development (OECD) warned that superbug infections will kill around 2.4 million people across Europe, North America and Australia by 2050 unless more is done to limit drug-resistant super bugs.

This includes around 1.3 million deaths across Europe.

The report estimates that 90,045 Britons will die over the next 30 years from infections which are resistant to treatment.

Simple measures such as hand washing and more prudent prescriptions of antibiotics could avert some of the deaths, the authors said.

Better hygiene, ending the “over-prescription” of antibiotics and enhancing rapid testing for patients to ensure they are being prescribed the right drugs are some of the measures that could overcome the threat, the OECD said.

Three out of four deaths could be averted by spending just two US dollars (£1.50) per person a year, the OECD calculated.

A short-term investment would save money in the long run, they added, saying that dealing with antimicrobial resistance complications could cost up to 3.5 billion US dollars (£2.6 billion) each year on average across the 33 countries included in the analysis.

Resistance is already high and projected to grow even more rapidly in low and middle-income countries.

The report warns that southern Europe risks being particularly affected, with Italy, Greece and Portugal forecast to top the list of OECD countries with the highest mortality rates from antimicrobial resistance.

It adds that resistance to second and third-line antibiotics – used as back-ups to treat infections when common antibiotics do not work – is expected to grow over the coming decades.

The report comes after health officials in England launched a campaign to try to prevent people from asking for the drugs when they do not need them.

Public Health England said antibiotics are essential for treating serious bacterial infections but the drugs are frequently used to treat coughs, sore throats and ear aches, which usually get better without the medication.

The health body’s latest campaign reminds people that if they are feeling unwell, “antibiotics aren’t always needed”.

Tim Jinks, head of the Wellcome Trust’s Drug-Resistant Infections Priority Programme, said: “This new OECD report offers important insight into how simple, cost-effective surveillance, prevention and control methods could save lives globally.

“Drug-resistant superbugs are on the rise worldwide and represent a fundamental threat to global health and development. This report provides yet further evidence that investing to tackle the problem now will save lives and deliver big pay-offs in the future.”I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.